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INTRODUCTION

This is the third in a series of summary reports on the general subject of

electromagnetic ar.d acoustical scattering by certain bodies of simple shape. The

choice of the spheroid as next in line after the sphere and cone is suggested by

several considerations. The ellipsoid, of which the spheroid is a specialization, is

the only remaining finite body for which 'exact' analytical solutions of boundary

value problems involving the vector and scalar wave equations are at all feasible,

and for the general ellipsoid these are of such complexity and tedium that few in-

vestigators have had the requisite combination of motivation and temerity to attack

them. The attractions which the spheroid holds for the analyst are thus evident.

Not only does it afford a generalization of all the existing work on the sphere, but

the presence of an additional independent parameter offers a means of developing

entirely new approximate techniques. Furthermore, the wide range of forms which

can be approximated reasonably well by a spheroid includes many which are of vital

interest in various fields.

The two types of spheroid, prolate and oblate, are from an exact analytical

standpoint nearly identical, to the extent that, given an exact solution for one body,

the corresponding solution for the other is almost trivially obtainable, at least in

terms of a corresponding set of special functions. However, the prolate form

I II - ,
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seems to predominate in the literature, partly because its limiting configuration is

a thin finite rod, which is the most elementary form for an antenna. The advent of

radar and the essentially prolate form of many aerodynamically efficient shapes

naturally provided strong motivation for the development of this branch of the family.

In the extremes of eccentricity the two forms are entirely distinct, as are the

associated physical phenomena and appropriate analytical approaches, so that the

oblate spheroid has a sufficiently separate entity to warrant individual consideration

in a later report.

Perhaps the first problem which presents itself in the construction of a report of

this nature is that of how much or what to include. In the cases treated previously

the volume of literature was such that a serious problem of selection and emphasis

was incurred. In the present case the volume is not so overwhelming, and this

produces the initial dilemma of whether or not to try to include everything, at least

in some degree of coverage. (One is reminded of the Englishman of a bygone era

who purportedly remarked of the turkey that it was a most inconvenient sized bird-

a little too much for one man and not quite enough for two.) The somewhat inordinate

length of what follows is the result of a leaning toward the positive horn. Some sort

of compromise is, however, inevitable and an element of arbitrariness is bound to

enter at some poin" . Thus we will limit our consideration in general to problems

of diffraction or scattering where the source of energy is exterior to the scatterer

(one exception is the cace of a poiit dipole located at the tip of a spheroid, which is

L 2
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immediately obtainable from a more general form). Even under this restriction the

problems of accumulation and editing are non-trivial, and it is quite possible, not to

say probable, that due to imperfect information or inadvertent bias some pertinent

and significant work has been slighted. If such be the case, all due apologies are

hereby offered and amendments invited.

Another question which must be faced at the outset is the nature of the objectives

of a compendium of this type. Certainly it cannot be expected to supplant the

original sources completely, and as a mere catalog of these its purpose might best

be served by brevity and reduction to concise statements of conditions and results.

On the other hand, in the emergence and analysis of new problems, conditions and

results of the old are often of little utility, and the primary interest centers on

principles and techniques. It thus appears necessary to discuss these at sufficient

length to give a fairly comprehensive picture of the state of the art. At any rate, the

question of the optimum degiee of detail to present is an eternal and rather delicate

one, and in a treaitise of this length the maintenance of consistency in this respect

is not easy. It is hoped that whatever its limitations, the account which follows will

serve :is a reasonably complete and convenient guide to existing solutions and as a

catalyst in the development of new ones.

An adequate historical survey of the spheroid problem, complete to the date of

its publication, is contained in Flammer's treatise on Spheroidal Wave Functions

(1957). Since then several important advances have been made, notably in the

_ _ _ _ _ _ _ _ _ _ 3 -J__ _ _ _ _ _
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approximate or asymptotic theories for high and low frequencies. In the former

range are-athe ,geometrical approach of Levy and Keller (1959) and the asymptotic

solutions of Kazarinoffand Ritt (1959) for the not-too-thin body, and of Goodrich and

Kazarinoff (1963) for the thin one. In the latter range is the work of Senior (1964),

who. has also given, a comprehensive discussion of the convergence properties of the

low-frequency series in general (Senior, 1961). Also of interest are the vector

solutions for" weak'scatterers given-by Shatilov (1960) and Ikeda (1963), which might

be considered extensions of the scalar solution of Montroll and Hart (1951). Despite

these, contributions, however, there is much to be done before the spheroid problem

can be deemed as well understood as that of the sphere. Since the work of Schultz

(1950) and the computations based on this by Siegel et al (1956), virtually no progress

has been made in the solution of the vector problem in the resonance region. All

existing techniques either break down completely or become prohibitively difficult

or tedious in this region, and the need for a totally new approach becomes more and

more apparent. Asymptotic solutions which hold for all eccentricities are still

lacking, though it seems possible that the methods already developed might be ex-

tended or modified to cover the entire range. Experimental data are also strangely

scarce, not only in the resonance region but at all frequencies, The few curves and

points which have been assembled here are the meager fruit of an intensive litera-

ture search, and include some unpublished data as well, e. g. certain data obtained

4.
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at the Ohio State University Antenna Laboratory and at Cornell Aeronautical

Laboratory.

One of the principa! headaches involved in the general speroid problem is the

necessity of dealing with a distinctive set of special functions, known logically enougk

as spheroidal functions. These have investigated quite thoroughly by several authors

and are now fairly extensively tabulated, but since their properties depend on an

additional parameter as compared with the spherical functions, and since there are

no usable recurrence relations, the manipulation and computation of these functions

is inevitably a nuisance. The first section of the next chapter deals at some length

with these functions in an effort (perhaps futile) to make them appear less formidable

to the uninitiated and thus facilitate the absorption of the accounts which follow. A

catalog of the existing numerical tables, listing the parameter ranges and indices

covered, is given in the Appendix. Another source of grief and frustration is the

wide variety of notations rampant in the literature. Little can be done at this stage

to standardize the notation in long-since-published works, but at least we can give

a complete account and comparison of two of the most common systems and refer

the reader to a fairly adequate table of these and the rest which appears in Flam-

mer (1957). The remainder of this report is, as far as possible, consistent in the

use of one of the systems detailed.

The body of the report consists of three distinct components, the first and most

extensive consisting of a largely verbal discussion of the methods and principles

5
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employed in the various solutions, the second being v tabulation of the most essential

results (here again a subjective judgement is imlied), and the third containing the

graphical representations of these and the experimental findings. This arrangement

was chosen in the hope that it might increase the overall legibility and maximize the

convenience for the occasional user. The admitted disadvantages are perhaps

mitigated by numerous cross-references.

The author is indebted to a number of colleagues for substantial contributions

and support in the production of this report. In particular the sections containing the

graphical results are almost entirely the work of Dr. R. E. Kleinman, whose con-

stant advice and ample assistance were also instrumental in the completion of the

remainder of the work. It is a pleasure also to acknowledge the faithful service

of Miss K. R. Pushpamala, John Asvestas, and Soonsung Hong in the accumulation

and preparation of the material, and the patient labor of Miss Mary Jane Jahnke,

who typed the difficult manuscript.
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I4 II

WAVE-FUNCTION SOLUTIONS

2.1 MATHEMATICAL BACKGROUND

2. 1. 1 Spheroidal Geometry

The geometry of the prolate spheroidal coordinate system, which is vital

to the analytical treatment of the problems we are to consider, is given in detail in

many standard sources. Unfortunately there is no uniformity of notation and the

many systems in use represent a major obstacle in the assimilation of material fron

the different sources. We will present here a fairly detailed account of two of the

most widely used systems -n the hope of providing at least an adequate basis for

deciphering the others. The diagram in Fig. I shows a cross section in the

Cartesian xz-plane, and the cylindrical symmetry about the z-axis completes the

specification. The surfaces E cosh p =const., n _= cos 0 =const., =const. are

respectively confocal prolate spheroids of major axis 2a=2Fg=2F cosh p and minor

axis 2b=2F[92 -1=2Fsinhp, two-sheeted hyperboloids (actually one sheet

corresponds to a positive r, the other to a negative), and azimuthal planes

originating in the z-axis.

The two representations of spheroidal variables, (9, 17, 0) and (p, 0, 0),

are both prevalent in the literature. While the (g, r, 0) notation is convenient in

! I - 7
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S 2F

FIG. 1: THE PROLATE SPHEROIDAL COORDINATE
SYSTEM.
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one respect, in that a single symbol represents the arguments of the prolate

spheroidal functions, the (p, 0, 0) notation is convenient in another respect,

giving rise to a right-handed system of coordinate vectors as opposed to the left-

handed system associated with (, ri, 0). In treating scalar problems the (Q, 17, 0)

system is, perhpys, preferable. It is certainly widely used and will be in the

present work. Vector problems involving spheroids are so complicated that the use

of the (p, 8, 0) system may be desirable in order to avoid a left-handed system,

but most of the literature employs the (9, , ) variables, and the present account

will do likewise.

The essential relations between these coordinates and the Cartesian

system may be specified by the following forms:

x = F j(2 - 1)(1 -?2) cos - F sinh p sin e cos

y = F J(9' -1)(1 - f) sin F = sinh ju sin 0 sin

z = F r = F cosh p cos 0

where ranges are 1 K, . < co, -1 ,<, 1, 0< < 2r, or 0< <pco, 0 (0 7r,

0< < 2z'

Thus, in the (a.. r, 0) system,

ag)= (g2  yj 22 (g___ 2x~ F (g2  ) sin _ ( )(1_v 2 )
ay F (W :7- ) sn , F (g2 -

an~ qy (W2 rp Cos~2  ar = (Y7-1)(1 -172 ) n La V T )

a _x F ( 2 I) ' ay F (g2_2) -r? aZ F(E2 -r)

osn , = cos =
ax F(g 2 -I)(1-) ay F (E2 -I)(I-n 2 ) 8Z

9-



THE UNIVERSITY OF MICHIGAN

3648-6-T

and unit coordinate vectors are related as follows:

I -- Cos g2 7 Co- sin ,

A -11n n A A
1 = 2-. 2 n2 sin + go2 17

Az -I _ 2 A A

an i'nCos~ + '7 sinO I + 1

x y

Note thati Ai ^ -i, * i Al :-i, i Al ' f

The metric coefficients are

y / J -1 77 -n2  y

In the (p, 0, ) system

QL= cos4  incosL, Op : coshgsin0 sin0 p sinhku cos 0
8x F(cosh p -cos2 0)' 3y F(cosh2 p -cos 2 0) ' Oz F(cosh2p -cos 2 0)

30: sinhg cosO cos0, 30 - s inh/ cos0 sin0 30_ -cosh sin0
&x F(cosh2 .L-cos29) 33y F(cosh 2 p -cos 2 0)' Oz F(cosh 2 p - cos 2 0)

0. A + sn , O : Cos A

x F sinhsin9 y Fsinh sin0' z

As in the preceding reports of this series, a unit vector will always be denoted by

a caret, all other vectors by underlined symbols. Also the vector product will be
denoted by a caret, viz. A A B, and the scalar product by a dot, viz. A_. B.

... 10 .. ..__ _ _ _ __ _ _ _ __ _ _ _
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and the unit coordinate vectors are related as follows:

A coshL sin 0 cos A sinh v cos 0 cosx ioosh.p -oos2o. ics2 -co
A cosh psin0 sin 0 A sinh pcos 0 sin A +-10 + Cos 1

oshP - osco o

A sinh g A co csh M sin 0 A1 =1 . ...... 1____ __ __

z icosh2 P - cos2 0 icosh2 - cos 2

and

A _coshu sin0 cos0 A coshp sinG sin 0 A sinh os

Ccoshp -cos 2 19 x icosh2 p -cos 2 0 Y cosh2 P -_ c Os2 0 z

A .A sinh p cos0Cos A + sinh -cos sintA cosh t sin 0 A

=1 IcoshP-cos20 x Ccosh2pcos2 0  y o2osZ
A 0 A-in + cos 0 A

x y

Note that i A A , 1 A 1 1 and i A 1 AP 0 0 0 0'
The metric coefficients are

h = F icosh2 -cos 2 o, h-F i cosh2p-cos 0, h F sinh p sin9.

The vector operations, gradient, divergence and curl, may be expressed in

terms of the metric coefficients as follows:

If /is a scalar function of position then
I¢ 1K A. +_I _/* Ai + I D 0A,

h a h nan ni h Aap

~1 K + I I
h -pp h ao 9 0 h a0p 0S11I
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If is a vector function of position, i.e.,
A A 7 A A

- - h a a

[ r yseh h i is doe ecusie it itre tat th exrsinfo

and,

for th -L (h (ie bv sntietclwt htotie yrp hug(,O wt

01-OL ao P ap

Note the deliberate omission of the expression for VAw in terms of the

e, cofficsystem. This is done because, while it is true that the expressions for

~and V - 0' are invariant under a change of coordinate definitlo the expression

for V A ~igiven above is not identical with that obtained by repl, ciiig (p, 0, 0 ) with

(9, v,). That is, using g cosh p, 17 cos 0, 1 j (which implies

~'and i~ 1=-i 0 (which implies 0 0 0) together with the definitions of the

mietric coefficients, it is easily demonstrable that the expressions forv/ ' and V* -

in the two systems are identical. However, if we use these facts to rewrite in the

1Q, n, 0) system the expression for V A 0 given above we find that

12
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VAOi-a (h lA hA ( (

Had we calculated V A !P directly in the (9, ?J, ) system using the general ex-

pressions relating orthogonal coordinate systems (e. g. Magnus and Oberhettinger

p. 145) we would obtain the negative of the above expression. The reversal of

sense is a manifestation of the left handedness of the (9, r,, ) system. While there

is nothing inherently incorrect in the consistent use of a left handed system, there

is an increased probability of error when results expressed in a left handed

system are compared with or transformed into right handed expressions.

2. 1.2 Spheroidal Functions

The scalar Helmholtz equation 7 2 0 + k2 ' 0 written explicitly in

the (, T, 0) coordinate system becomes

1a0 (2.1)
DE an a 21(-p ~

where we have set kF= 27r F/X- c, X being the wavelength. The separation of this

equation is accomplished in the usual way by setting

q¢,( , r), ,o) = U(Q)V 07) W (0)

and the resulting ordinary differential equations may be written

d 1) d U  -mn C2 g2 + 2 U-= (2.2)

d [mn2 + - 2 -2' V- (2.3)

. . . . .... 1 3 -
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a-ad
f

d2 W + m 2 WO (2.4)

where m and X are the two separation constants. The functions W(A) are thusmn

the expected trigonometric or exponential functions, and the necessity of a single-

valued representation for the field dictates that m be an integer. Specification of

the X is more compiicated and will be dealt with presently.mn

The theory of the spheroidal functions, which are the eigenfunctions of the

second order linear ordinary differential equations (2. 2), (2. 3), is now fairly com-

prehensive, and it is not the function of this report to elucidate this in its entirety.

The reader is referred to Stratton et al (1956), Meixner and Schffke (1954), and

Flammer (1957) for more detailed accounts. We will limit the present treatment

to a short account of the general properties which relate these functions to the other

prin-ipal families of special functions and which are needed in the applications that

follow.

The hierarchy of second order differential equations to which that of the

spheroidal functions most properly belongs (it is clear that the two! equations (2. 2),

(2. 3) are essentially the same, the only difference being in the range of the inde-

pendent variable), is headed by Hill's equation, which is written

d2 u
dz 2 +p(z)u0 (2.5)

14 ... _ _ _ _



THE UNIVERSITY OF MICHIGAN

3648-6-T

where p(z) is any real periodic function of z which can be expanded in a convergent

Fourier series. If this is specialized by setting

p(z)=c +c (snz' 2 +c 3 k2 (snz (2.6)
1 2

the result is a form of the Lame wave equation, which results from the separation

of the Helmholtz equation in general ellipsoidal coordinates. Here sn z is a

Jacobian elliptic function and if itts modulus becomes unity, corresponding to de-

formation of the elliptic system into a prolate spheroidal one, then sn z -- tanh z,

and the transformationr

tanh2 z = 1 -X 2

reduces (2.5) to the form (2. 2). One may note that in the static limit, i.e. as

k---> 0, equation (2. 5) with p(z) as in (2.6) still retains its ellipsoidal character, and

its solutions, when properly restricted, are the Lam functions, or ellipsoidal

harmonics. On the other hand, in the same limit equations (2.2), (2.3) become

essentially the equation of Legendre so that the spheroidal harmonics are ex-

pressible directly in terms of Legendre functions.

One further specialization might be mentioned. The constants c, c, c , in

j (2.6) for the ellipsoidal system are such that if the modulus of sn z approaches zero

then c--->0, and if c , which depends on both this modulus and k, remains con-
k2

stant, the result is a form of Mathieu's equation, which governs the wave functions

of the elliptic cylinder. Another form of this equation is obtainable from the

i15
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spheroidal equations (2. 2), (2.3) if the separation constant m2 is set equal to 1/4.

The complete theory of Mathieu fanctions can thus be derived as a special case of

the general theory of spheroidal functions.

The general properties of the spheroidal functions themselves are best dis-

cussed in terms of the singularities of the differential equation (2. 2), which will be

taken as the prototype for all the functions required. The singularities are regular

ones at g =+ 1, each with indices + 1, and an irregular one at co. in any region
2'

excluding these points, the solutions of (2.2) are analytic functions of the four

quantities , X , c2, m2 , and of order no higher than 1/2 in terms of the lastmn

three. As noted above, the necessity for single-valuedness of the functions W(0)

restricts the values of m to the integers, and for each m a fundamental system of

solutions is easily established in the neighborhood of each singularity based on

some prescribed initial conditions at an arbitrary regular point. In the work of

Meixner and Scha fkc (1954) the use of Floquet's theory in the neighborhood of co

leads to the establishment of a fundamental system U (i), U () such that1 2U. iT"  ivr U  i = -i(v + ) r
U e' e U ), U2(e i r) =e U (), for certain values of v, and12

the general solution then has the property U( e i )e U (g) . The quantity v is

called the characteristic exponent, and its permissible values are determined by

the condition that

sin v - [ (L° e'~)-U1 Q ei7]

16
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where is an arbitrary point where the initial values are specified, so that for each
0

set of values c and m there is a denumexernhly inflite set of allowabie values of V,

and a corresponding set of eigenvalues X . The eigenfunctions we have to deal

with are thus a doubly infinite set with indices m and v, the former indicating the

order and the latter the degree. For most of the applications which follow, it is

required that the functions be finite at the singularities of the differential equation

=+ 1, and by analogy with the Legendre functions, to which the spheroidal functions

must reduce in the static limit, the index v must be an interger > m. (An ex-

ception to this, however, will be noted in the next chapter.)

No legitimate recurrence relations (i. e., formulas which relate two or

more contiguous functions in terms of coefficients which do not involve other

spheroidal functions) are as yet nown, and the nature of the differential equation

(2. 2) precludes their establishment by the usual techniques. However, the ex-

pansion of the functions in terms of other known eigenfunctions of simpler equations,

e. g., Bessel, Gegenbauer, Legendre, etc., yields three-term recurrence re-

lations for the expansion coefficients, and these form the basis of most numerical

treatments of the functions. The coefficients necessarily involve the eigenvalue

A.mn ,and convergence of the series implies the convergence of a certain continued

fraction, or equivalently the vanishing of an infinite determinant, which furnishes a

transcendental ec-ition that may be used to determine X explicitly. A moremn

detailed account of the procedure follows presently.

.. - 17 -
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It is apparent that the functions of interest must be either even or odd

about the origin. This follows from the fact that since the indices at the singulari-

ties - + I are + - no two solutions which are finite at both these points can be
2

linearly independent, and the continuity of the function and its derivative at the origin

then requires that U(-F)-+ U(9).

The convergent representation of the solutions of (2. 2) over the entire

infinite range of the independent variable requires at least two distinct expansions.

For the range j 1, for which equation (2.3) is the appropriate form, an ex-

pansion in the Legendre functions Pm (77) is indicated, and since the range is that of
n

the angular variable , the corresponding solutions are called angle functions and

will be denoted hereafter by the symbol S (c, r)). The angle functions are actuallymn

of two kinds, those which are finite at Y7 + I and those which become infinite there;

the latter are of no utility in the physical problems to be considered, and we limit

our discussion to the former, remarking only that there are analogous expressions

for the latter involving the Legendre functions Qm (r7).
n

We write then

OD

S (c,7) ='. dmn(c) Pm (r) (2.7)mn r~,~r m+ r (27
r=0, I1

where the prime indicates, as alhays hereafter, that the summation index runs over

the even or odd integers according as n - m is even or odd. Substitution of this

expansion in the differential equation (2. 3), followed by application of the

18 .... .
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differential equation and recurrence relations for the Legendre functions,

-~ mn
gives the following recurrence formula for the expansion coefficients d r(c):r

(2m+r+2)(2m+r+1)c 2 d (c)+ F(m+r)(m+r+l)-X (c)+
(2m+2r+3)(2m+2r+5) r+2 P mni_ mn(2.8)

2(m+r)(m+r+l)-2m2 -  2] d mn r(r-1)c2  mn

(2m+2r)(2m+2r+3) c r (2m+2r -3)(2m+2r -1) dr-2 (c)=0, (r> 0)

There are two non-trivial solutions, i. e. sets of coefficients which satisfy this

family of equations, only one of which, l2o5wever, yields a convergent series in (2. 7),

and in this one the ratio dmnn/ dmn2 approaches zero as -c 2 /4r 2 . Rewriting (2. 8)

in terms of this ratio, iterating for the requisite range of values of r, and applying

mn
the above condition as r--* co and the fact that d r 0 for r<K , yields finally ther

transcendental equation for X (c) mentioned earlier. Once this quantity is de-mn

termined, the expansion coefficients may be computed in terms of an arbitrary

initial value and the resulting series (2. 7) will converge absolutely for all finite

values of r). In practice the solution of the transcendental equation for X (c) ismn

usually accomplished by an iterative procedure using a first approximation given by

a power series representation in the variable c2 , the first few coefficients of which

are given in the standard literature, e.g. Flammer (1957). The arbitrary value

The analogous treatment of the functions of the second kind requires the definition
of non-vanishing coefficients dmn with 0 < r < 2m (see Flammer, 1957). No
ambiguity results, however.
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mentioned above determines the normalization of the functions, and this will be

fixed in the present wvork, as in that of Flammer and others, by the stipulation that

Inm(~orr d d mS (c0) P(fonmevenand-S (c,O)- P (0) for n-m odd, with
mnn dq mn dr) n

the result that

r n-rn
OD 1)2 mn 2

()(r+2m)! d (-) (n mn)!

r0 r~r~r2m) 2 -r'* ~mfor (n -rn) even (2.9)

r(E -+2 n n-n-im)
,(4) 2 2'

(_) (r + 2rm 1)! d" (-1) (n+rn+1)
+1 m for n-rn odd. (2.10)

The general Sturm-Liouville theory provides that the functions S (c, n7) for fixed
mn

m are orthogonal over the interval -1 < i <1 and the normalization factor N is
mn

easily found to be-

mn2

[SM (C (r+2r)'.(d )

mn .. ISncf)1 r=0, I (2r+2rn+ 1Wr2.1

The index m is in general positive, but if the exponential form of the - dependence

is used, ;f may assume negative values also, and the corresponding angle functions

are related to th~ose with m > 0 by the form

S (c, )(.)m (n - ni)! . (c, n) (2. 12)
-in2 (n -' ,m) 1 mn
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Useful representations for the range g > 1, i.e., for solutions of

equation (2.2), can be obtained now from the form (2. 7) by utilizing the fact that any

SOlution of the Helmholtz equation forms a suitable kernel for an integral repre-

sentation of one of the separated solutions in terws of another (cf. Morse and

Feshbach, 1953, p. 636). If we choose as the kernel the fumnction

m

multiply this by S (c, 7) and integrate between limits such that the bilinear con-mn

comitant vanishes at both, the result is a solution of equation (2.2) with independent

variable E, which is called a radial function and will be denoted hereafter by

R (c, 9). Examination of the bilinear concomitant shows that there are three
mn

possible sets of limits, namely -1 and 1, i co and 1, -1 and i co. Substitution of the

expansion (2. 7) for S (c, 17) followed by use of the differential definition of the
mn

associated Legendre function Pm (t7) and an r -fold integr.tion by parts leaves us
n

with integrals of the form

§Jicgn(' m+r
j di)

a

and when a and b are replaced by the above three sets of limits, these integrals

can be evaluated in terms of spherical Bessel functions. We are thus led to the

expansions
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03

2_____ mnr/2~r! I
P Q -1)ml

(c,) dmn .r (2m+r)z (CD (2.13)mn %cg)m r r! m+r

r =0,1

where z( ) is one of the four spherical Bessel functions Jn n h 1)- i
n n n --- n in

(2_
h n -inn, accordingly as) =1, 2, 3, 4. The normalization factor p mnis arbitrary,

and following Flammer (1957), we specify it as

_.m-n m d mn (2 m+r)14)Pmn C c (d2.(14)
mnr r

which gives the radial functions the same asymptotic behavior as the corresponding

spherical functions for large argument, i. e.

(1) 41
Rmn (c, - cos F- (n+171r, etc (2.15)

With this normalization the Wronskian of the first two types is easily found to be

1
A (1,2) = c( 2 _i) (2.16)

If the region of definition of either the angle function S or the radial function
mn

LI)
Rmn is extended., with proper adjustment of the phase of any radical involved, it

becomes apparent that for some tf, the two functions must be linearly dependent.

With the definitions established above, we can thus write

S (c, z) =k( 1 ) (c) R( 1 ) (c, z) (2.17)
mn mn mn

The statement prevalent in the literature that this limit obtains as c->c is not
correct. Forg j 1 and c--> co the behavior is otherwise (see Silbiger, 1961).
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with a similar expression relating the second type of angle function mentioned

R(2)(1earlier to R (c, z). The constants of proportionality or joining factors k( 1 ) (c)
mn mn

-~ mn
may be found in terms of the coefficients d by comparing the functions or their

r

derivatives at z =0. For the functions of the second type, a Laurent series may be

developed in the region 1 < z < wo and the coefficients of like powers of the variable

equated. The forms thus obtained are given in the standard literature and will be

deferred here until required.

Many other representations, characterizations, approximate forms, etc.,

are known for the spheroidal functions, but it is doubtful whether our present pur-

poses would be served by dwelling on them at this point. The reader is referred to

the sources mentioned above and to others cited in later sections. We close this

section with a few general remarks which may contribute to the overall perspective.

To date it has not proved possible to find any elementary integral ex-

pressions for the spheroidal functions, i.e. expressions of the individual functions

in terms of definite integrals involving only elementary, or even only simpler func-

tions. They can however be characterized as solutions of linear homogeneous in-

i tegral equations of the form JF
f(z)-= XK(z, z')f(z')dz' (2.18)

where the kernel K(z, z') involves only more elementary functions, as illustrated

above in the derivation of the expansion for the radial functions. Other permissible
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kernels, most of them involving Bessel functions, are given in the references al-

ready cited. Use of kernels involving sphezoidal functions has yielded a number of

definite integrals of products of these functions, see for example Chako (1955).

Other useful representations which are developed at length in the

literature include power series expansions about the origin and about the singulari-

ties + 1. In the appropriate ranges of the independent variables, these are more

convenient for computation than the expansions given above. For the regions of low

frequency or small eccentricity, certain expansions in powers of the parameter c

have been derived, though the range of convergence of these is in general quite

limited. This question has been examined by Senior (1961). Asymptotic forms valid

for large c are also available and can be used to advantage in the high frequency

ranges. These are in general based on the parabolic cylinder or Whittaker functions.

whose equation the spheroidal equations resemble in the limit of large c. However,

there are still regions in the frecuency-eccentricity space, which cannot be treated

conveniently by any of the representations known at present. These will be dis-

cussed in a later section.

The lack of legitimate recurrence relations for the spheroidal functions

was mentioned earlier. A number of so-called recurrence relations of the Whit-

taker type are indeed known, but the coefficients which mu!tiply the neighboring

functions contain integrals involving other spheroidal functions, which are in general

intractable, and the formulas have ,o far been of little utility.
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The theory outlined in this section has been based exclusively on the so-

lution of the scalar Helmholtz equation. The treatment of vector problems of

course requires numerous additional concepts and derivations in most of which,

however, the scalar solutions are intimately involved. The vector solution will

form a separate section of this chapter.

2.2 SCALAR SOLUTIONS

2.2. 1 Scalar Green's Functions

We turn now to the solution of a certain class of problems which might

be interpreted physically as the scattering or radiation of time-harmonic sound

waves in a homogeneous, isotropic, non-dissipative medium, by a closed prolate

spheroidal surface with various types of boundary co'ndition. The technique used is

the straightforward (if sometimes tedious) metiod of formally expanding the

requisite field quantities in series of the appropriate eigenfunctions (in this case the

spheroidal functions discussed in the previous section), and determining the ex-

pansion coefficients by application of the boundary conditions at the surface and

(if necessary) at infinity. The resulting solutions will be referred to as 'exact',

primarily to distinguish them from the various approximate results to be taken up

later on. It is understood, of course, that since these 'exact' solutions contain

infinite series, their exactitude depends on the convergence properties of these

series and in any practical sense, i. e. in the absence of a virtually infinite com-

putational capacity, the achievable accuracy, particularly in the optics region, may

be far less than that given by a suitable approximate technique.
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Because of the orthogonality cf the angular functions of both the 77 and

] variables, the procedures required here are no more complicated than those used

in the case of the sphere, and the forms of the resulting solutions are directly

analogous. The completeness of the angle functions, which was not specified in the

previous section, follows from that of the spherical harmonics by a fairly simple

argument (cf. Siegel et al 19.3).

For problems of scattering or diffraction in which the energy is supplied b3

a source exterior to the spheroid the discussion will he limited to the case of an

elementary point source at an arbitrary location. This includes the plane wave with

arbitrary direction of propagation as a limiting form. The more complicated case

of a dipole source will be considered later in this section when certain electro.

magnetic problems which are essentially of a scalar nature are taken up. The

boundary condition for the scalar problem is in general the vanishing of a linear

combination of the field quantity, which is usually the sound pressure or velocity

potential, and its normal derivative on the scattering surface. The particular

cases of the Dirichlet condition (where the function itself vanishes and the surface is

temed 'soft') and the Neumann condition (where the normal derivative vanishes

and the surface is called 'hard') are both obtainable by specializing the coefficients

in this linear combination.

The solution for an elementary source with any of these boundary con-

ditions is properly termed a Green's function, and its derivation follows the standard
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procedures given in any text on mathematical physics. In terms of the spheroidal

coordinates specified in the previous section, the field strength at the point r( , )

due to the unit source at the point r, (9 1,01),i-e. the free-space Green's function , is

G-er (2.19)
'(r)=Go(D r,) = 4( (2.19I0

This is then the solution of the inhomogeneous wave equation

V 2 G+k 2 G 6(r-r ) (2.20)

where the right hand side is the Dirac delta function, which vanishes except at

r = r and whose volume integrl over the entire space is unity. At large distancesm -1

from the source, 0 represents a spherically diverging wave, in accordance with the

well-known Sommerfeld radiation condition, which is one of the boundary conditions

necessary to determine the solution of any such problem uniquely. Since the quantit

G (D, r ) is symmetrical in r and r and satisfies the homogeneous wave equation
1 -1

at all points except r = r the standard theory for such equations permits us to write

almost immediately the formal expansion (cf. for example, Morse and Feshbach,

1953)

G 0 O 1 1

(2.21)

- / A S (c, 17)S (c, n) Cos m(P - 0 )R( ) (c, )R(c >jmn mn mn 1 mn < mn
m, n

d The harmonic time dependence, e , is assumed, and this factor is delcted from
all field quantities.

2
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where

for 1

and conversely for 9>.

The occurrence ofR(3 ) rather than R 4 ) is a direct consequence of the form of

radiation condition dictated by the choice of time dependence, lra r - ik =0.

By integrating both sides of equation (2.21) over a vanishingly small

interval in g about the point g and making use of the orthogonality of the functions

of n and 0, the coefficients A are found to bemn

ikEm
A n

mn 27N
mn

where E is the Neumann number, defined asm

c = I for m=0
m

E = 2form=l, 2, 3 ........m

and N is the normalization integral given in equation (2. 11).mn

The analogous form for the total field exterior to a spheroidal boundary

to which the source is also exteri-,r can be obtained from (2. 21) by simply adding a

symmetric function of the source and observation points such that the total field

satisfies the boundary condition specified on the spheroid. We consider here a

linear homogeneous mixed boundary condition of the form
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f + a y/] =0 (2.22)

a

where u is the total field due to the point soure in the presence of the spheroid

S= o and -L is the normal derivatice, h - The Green's function satisfying the
o an h9 ag

condition (2. 22) is then written

EGrr ik m S (c, 77)s (c, 77 )Cos m(P - 0
G(r 2r ) = N mn mn )

m, n

mn > Rm)n(C, <) -Cmn

and constant C mn is found by subjecting G (or more specifically, the quantity in the

brackets in G) to the conditions in (2. 22). Thus, we obtain

j- - E
m S m (C,77)S (C,n1 )cosm(0-041 )"

m, n mn

R(c, a (0i)

R ( ) (c, E) R) c, ) - mn an mn o (3)([i> n <(3a ) n (i<j
aR (e,%) ) 3- R (,mn an mn o

(2.23)

The solutions for Dirichlet and Neumann boundary conditions follow immediately on

setting 3 and a respectively equal to zero.

The solution for plane wave incidence is also obtainable from (2. 23) by

letting the source point recede to infinity in some arbitrary direction specified
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by the spherical coordinates 0, " The resulting behavior of the affected

quantities in (2.23) is as follows:

1 -- cos 0 I where 0 is the polar angle,

i(c 91 -(n+ I)'2 )  ikrl
(3) e2 e 1 n

-- * a, R i ) (c, )9 kr1 mn 1 C~ 1- r

cg kr where r1 is the distance of the source from the origin.

The expression for the total field must be renormalized, i. e. multiplied by the

-ikrz
factor r e 1n accordance with the usual plane wave representation, and the

1

final result, which is no longer properly termed a Green's function, but which in

consideration of its similarity to the previously derived expressions we might denote

by the symbol G O, is the form

Gm ), 0 2  N i nN  Sm(c, )Smnci cos) cosm(O- 1 )01 L Zmni) mn~c

m=o n-m mn

(OR(1 ) ac (i ) (c10R 1) (c,) mn o an Rncng R+( ) (c, (22 4)
OR (3) (c, (a R () (c, o n

mn 0 an mn 0

One further specialization is worth noting here. If the source is re-

stricted to the axis of symmetry of the scatterer, then r7 1= I and disappears.

From the representation (2. 7) of the angle functions and the well known properties

of the Legendre functions, it follows that S (c, 1) = 0 for m > 0. Ora of the
mn
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summations in (2.21) thus disappears along with the 0 -dependence and the resulting

-ik O(i) 
3)

Go( , 77; ) 2S S(C, 7)Son(C 1)Ron (cE<)Ro (c, ), (2.25)
n=o on

and the same modifications obtain in the expressions for G and G . If the obser-OD
() R(3)

vation point is in the far zone, the asymptotic forms for R( 1 (c,g) or R (c, 9)
mn mn

may be used in (2.25) and further simplication will result. The specific forms are

I presented in section 4. 1.

The standard problems of radiation from a spheroid carn be handled in

similar fashion. Here the incident field is absent and the boundary condition is

inhomogeneous. A mixed linear boundary condition similar to (2.22) is generally

enough to include most problems of practical interest and we outline the procedure

briefly, deferring specific cases for later treatment

Suppose that

q1 + F(r, 0) (2.26)

where F is sufficiently well-behaved so that it can be expanded in a double series

of the surface wave functions S mn(c, ) cos m 0. Then we write

F(v, {)= E' A S (c, r)cos m (2.27)mn mn
m, n

t

--*1' m m m m m m mm m mm m mmm m m( m m m mml
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and from the orthogonality of the angle functions, the coefficients A are given bymn

1

A (c) - 1 - F(mi, ,9S (c, n)cos mo dndo (2.28)mn N (1+ 6 )7r mn
mn om -1

The radiated field pE 7, ) is expanded in the same manner as before,

SB mnR()mn (c, g) Sn(c,' 7)cs mo (2.29)
m, n

and subjected to the boundary condition (2.26), and since the angle functions are

linearly independent we can immediately equate the coefficients of the functions

S (c,n) cos m 0 to give

B = A ~R(3) (c,~ ER (3) (c, Eo-1 (2.30)
mn mn mn M11 0 an mn 0

The obvious specializations of this result may be carried out as in the previous

forms.

2.2.2 Pseudo-Scalar Problems

The formulas developed in the preceding paragraphs are sufficient

for most problems involving the scattering or radiation of a time-harmonic scalar

field by a spheroid of fairly arbitrary sL.rface characteristics or behavior. We now

wish to show hov they can also be used to solve a limited class of vector problems

in which the vector field is essentially characterized by a single scalar quantity. As

will be seen, the scalar problems involved are of interest only in connection
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with the vector problem from which they are derived. Hence, the designation

"pseudo-scalar" will be used to distinguish them from scalar physical problems.

The general vector problem is that of finding the electric and magnetic

field vectors, E and H, external to a prolate spheroid in the presence of any of

various incident or primary fields. Our attention will be largely restricted to

bodies which are either perfect dielectrics or perfect conductors, imbedded in

homogeneous, isotropic, perfectly dielectric media of permeability .u and per-

mittivity c. In MKS units the homogeneous Maxwell equations which govern the

behavior of the field quantities at all ordinary points in space, are written

VA E - iw p- 0

'VAH-iWE E = 0 (2.31)

V- E=V • H = 0.

The expression of Maxwell's equations or the concomitant vector wave

equations in the spheroidal coordinate system results in a set of three partial

differential equations in the components of either the electric or the magnetic field

vector, each of which contains all three components (cf. Page, 1944), and the

simultaneous solution of these is in general impractical. The solution of the general

vector problem must accordingly be attacked by means of a different technique,

which will be described in the next section. In certain special cases, however,

notably those in which the entire system is symmetric about the axis of rotation of
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the spheroid, the equations degenerate, and the entire field representation can be

obtained in terms of a single scalar quantity which satisfies the scalar wave
+

equation with the 0 -dependence removed. Page also points out that. as in the

spherical coordinate system, the component equations separate in cases where both

the electric and magnetic fields are normal to the radius vector at every point, i.e.

the propagation vector is radial at every point, which is the so-called TEM mode.

It should be noted, however, that this restriction is so stringent as to exclude

practically all radiation or scattering problems of real interest.

The separability in the axially symmetric spheroid problem was first

exploited by Abraham (1898) to find the characteristic frequencies and decay rates

in a dielectric medium surrounding a conducting spheroid, and has since been used

by various authors for related problems, as outlined below.

From an analytical standpohit, there are two possible types of axially

symmetric field, one in which the E vector is in the meridian plane at every point

and the H vector is normal to this plane, and the other in wkhich the roles are inter-

changed. We limit our discussion to the former case. That is, the magnetic field

is assumed to be given by

H -~\sin0HA o H (2.32)
0 x 0nH1cs y

+Actually this holds not only in the spheroidal case but in any reasonably well-
defined orthogonal coordinate system.
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where H is independent of . Since Maxwell's equations (2.31) imply that the

rectangular field components satisfy the scalar wave equation, i.e.,

(V2 + k2) sm H =0,Cost

and since this equation is separable (see Sec. 2.1.2) it follows that H is pro-

portional to the product Rln(c, )Sn (c, I). Note the appearance here of the

spheroidal functions of order one, in contrast to the scalar case where an axially

symmetric field entails only the zero order.

The mechanism is thus established f5r the determination of the character-

istic electrical oscillations of the conducting spheroid in a dielectric medium and

the solution of related boundary value problems involving axially symmetric ex-

citation. For the former, we can apply the appropriate boundary condition to each

harmonic, i. e. fcr each value of n, individually. On the surface of a perfect con-

ductor the tangential electric field must vanish identically, and in our case this is

simply the condition E = 0 at E = 9 . From the second equition of (2.31) and the
T1 0

representation of H, specified above, this is equivalent to

_0 -- Rn(C' =0at= (2.33)

which is an implicit equation in the quantity c=-kF. The roots of this equation will,

in general, be complex. The proof of this will not be given here, but an analogy can

be drawn with the spherical Bessel functions and the essential argument is as

follows. if the radiation condition is to be satisfied for large , then the radial
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(1) (2) (1) (2)

funcfionmust be of the third type, R =R + iR . R and R are both real,

and as in the case of Bessel functions, neither they nor their respective derivatives

have apv common zeros. If the root of (2.33) with least absolute value is called c
n

th
then the characteristic wavelength of the n harmonic is

X 27rF/Rec
n n

and-,Jtelogarithmic decrement, which determines the time rate of decay of the

field, is

6 -27rIm c/Re c
n n n

This is essentially the procedure used by Abraham (1898), Page and

Adams (1938),, Page (1944), and Ryder (1942) to investigate the resonance

phenomena associated with thin conducting spheroids in general, and in particular

with the limiting case of a thin finite wire ( o-->1). The roots of (2. 33) are found
0

by expanding the radial functions and their derivatives in power series and then

using a successive-approximation scheme to solve for c . The same techniques
n

can be used for the case where there is an axially symmetric applied field. This

field is assumed to consist of a known component of each harmonic, and the

boundary condition is applied to each harmonic of the total electric field, i. e. the

sum of the applied and radiated fields. In this way the above authors gained con-

siderable quantitative and qualitative information about the resonant frequencies and

decay factors of thin spheroids, as well as the antenna currents and impedances of
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these bodies when stimulated by time harmonic uniform fields or plane waves of low

frequency with electric vectors in the axial direction. A thorough discussion of their

results in beyond the scope of this repori, but certain ones of particular interest

will be mentioned in a later section.

The general axially symmetric vector scattering problem can be solved in

much the same way as the acoustical problem. Given the completeness of the

spheroidal functions in the established ranges of the variables, the applied (or

incident) and the radiated (or scattered) fields can both be expressed in terms of

scalar quantities satisfying the Helmholtz equation, and these can be expanded in

terms of the appropriate spheroidal functions. The known and unknown coefficients

can be related as before by using the boundary conditions at the surface and the

orthogonality properties of the angular functions. In this way the problem of an

axial dipole located at the tip of a conducting spheroid has been solved for several

eccentricities and frequencies by Hatcher and Leitner (1954), and that of the same

source located at an arbitrary point on the axis for a somewhat larger range of fre-

quencies and eccentricities by Belkina (1957). The procedure is as follows.

If a point electric dipole is oriented parallel to the axis of symmetry of the

chosen coordinate system and located in this axis, then the associated scattering

problems involving symmetrical bodies can be solved in terms of the single magnetic

field component H The first step in the spheroid problem is to expand this com-

ponent of the dipole field alone in series of spheroidal functions. If the dipole

37



THE UNIVERSITY OF MICHIGAN
3648-6-T

moment is p iz and its location is at the point (g, 1) the field component at the point

(9, 77) at a distance R from (9 , 1), is (see, for example, Stratton 1941)

H - 4 e i 1R sin e (2.34)
47r R - ikR)

where

R F f 2 + r?-1+E2 -2 g n
1 1

and 0 is the angle between the vector R and the dipole axis, i. e.

sinO -F0 - _1)1-W 2
R

As in the previous case3 of electromagnetic oscillations, the appropriate spheroidal

functions are those of order 1, and in terms of the undetermined coefficients

an( 1 ), we write, for g > E1o

ikR (3)ikR sine 0 , n(En_ I) R n (c'0)S n(C' 1.) (2.35)

R ikR/ n=O n 1 inc~S(,?)(.5

The determination of the an ( ) is facilitated by letting E become very large, under

wbich circumsiance

R---F( - cos 0), cos 0---;)r

and the left side of (2. 35) approaches

i3
k e -icc cos 0

e sin0•

Furthermnore, as specified in the pceceding section,
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(3) n+1 Ie
I n cg

I and using these limits in (2.35) gives the form

O
-ic91 Cos 01 _)nl

sin 0 InZ ", Q (-i)n+lsn(c cos) (2.36)
n=0 n In

Differentiating the well-known expansion

c)
-icg cos 0 Xse (-i)n (2 n +~ i)J(C )P (cos 0)

n=0 n n

with respect to 0 and using the fact that _" Pn(Cos 0 P (cos 0 we can write

eCcos .9sn0=i -. )P 1 (Cos 0)
n-O

e 1sin 0 -t9 i g)n 12~ ~ c

-gk S n S )-in+()j cosO)

Multiplying this equntion by S, (cos 0) sin 0 and integrating from 0 to 7r gives

r

r7r

a r (91)(_i)r Nlr= k (_)n(2 n +I)J nlg 1)  P I(cos0)S r(cos0)sin~d0.

k9 I- n (237

n=0 0

The integral on the right is easily dealt with by means of the expansion (2. 7) for

the anfr"ar functior SIr, and the result is
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:OD

r -2ik 'in(n+2)!llrnl(l)~1 Z n n+
( - i ) N, =r - 7 (-i -- -n c

n=o, 1

The sum on the right is now precisely equivalent to that appearing in the expansion

(2. 13) of the radial function R( ) (c9 l ) for m =1, and the final result is therefore

r+1 (1)

kr IrC~l

r ) NrP 1  1

so that the desired expansion of H is

H=- c2 , N ~n (c, g 1) R(In c g)Sln(c,rl) (2.39)
2" 17-1 n=0 InI

and the boundary condition (2. 33) is applied to the total field, i.e. the sum ( (2. 38)

and (2.39), with the radial functions interchanged in the latter, yielding at once

-(-i)rR 3 (c, 9 R())cnin I 9 l-11In

A n = n N R(3) (cj (2.40)
Lai( P 7 n 9J =9 0

which, in conjunction with (2. 39), gives the scattered field of the conducting

spheroid excited by an electric dipole located in its axis of symmetry.

If the dipole is located in the surface of the spheroid, i. e. at the pole,

then 9I = g0 and the expression for the Wronskian of the radial functions of first and

40 .



THE UNIVERSITY OF MICHIGAN

3648-6-T

third types, which is i times the quantity given in (2.16), reduces the expression for

the total field to

T ____OD__&(-)R (c, )S (~
HT -Wk D In 'in (2.41)

n0 Pn Ni Y(2 -1 Rin (c,

0

The far zone radiation pattern is obtained as usual by inserting the asymptotic form

of the radial function in the numerator of the above and dividing by the quantity

ikr/

We close this section with some general remarks on the relations between

scalar problems and axially symmetric vector problems involving the spheroid.

In Kleinman and Senior (1963) it was shown how the vector solution for an infinite

cone excited by a radial electric or magnetic dipole can be obtained by applying a

vector operator to the solution of a physically meaningful scalar problem involving

a point source and a simple (Dirichlet or Neumann) boundary condition satisfied by

the total field on the conical surface. The problem is formulated there in terms of

a pair of Debye potentials, which are independent solutions of the scalar wave

equation, and the result just stated derives from the fact that in the particular

coordinate system appropriate to the cone problem, the electromagnetic boundary

condition can be satisfied if one of these Debye potentials vanishes identically and

the other 6atisfies one of the above-named scalar boundary conditions on the cone.
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Unfortunately in the spheroidal coordinate system this situation does not prevail.

The general electromagnetic field can still be represented in terms of a pair of

Deb3 e potentials, but even if the corresponding scalar source is located in the axis

of s'nmetry, the resulting expression for the tangential electric field component E

conains one or the other of the potentials as well as its derivatives with respect to

both g and r, so that no simple scalar boundary condition on either potential can

make this component vanish. Thus it appears that, while the axially symmetric

vector problem can still be solved in terms of a single scalar quantity, the cor-

responding scalar boundary value problem cannot be reduced directly to one of the

standard forms previously derived, and probably has no physical interest in and of

itself.

2.3 VECTOR PROBLEMS

In the preceding section it was shown how the solutions of certain electromag--

netic problems involving spheroids could be obtained directly in terms of a single

quantity which satisfies the wave equation and certain boundary conditions of a

rather complicated form. The requirement of complete axial symmetry stipulated

there is of course a stringent one, and rules out the important cases of arbitrary or

transverse dipole sources, as well as the limiting case of a plane wave. Con-

sideration of the latter, which is our next objective, requires a much more

elaborate analytical apparatus, which we proceed to develop briefly.

_________4- 42 ..-
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In the preceding report of this series (Kleinman and Senior, 1963) a general

formulation was given for the solution of an electromagnetic scattering problem in

terms of a pair of Debye potentials or their associated Hertz vectors. This

formulation could be applied to the spheroid problem, and the solution could pre-

sumably be carried out in some manner though not in the same sense that solutions

to the cone and sphere problems have been. That is to say, the solution would not

be obtained in closed form or even in terms of explicit expressions for the

coefficients in an infinite series. The difficulty which arises is primarily con-

cerned with the boundary conditions, and in order to bring this out more clearly,

and also to follow existing literature on the problem, we present here a somewhat

different (though essentially equivalent) formulation in terms of a set of ve tor wave

functions analogous to those developed for the sphere problem by Hansen (cf.

Stratton, 1941, p. 393).

The construction of these functions is perhaps best motivated by a brief dis-

cussion of the import of the term separability as applied to a vector problem. If a

general vector: solution of the wave equation.

V 2 F+k 2 F = V F- V^V^F+k 2 F=O (2.42)

is resolved into components parallel to the coordinate axes, three scalar partial

differential equations for the components result, each of which, except in

rectangular Cartesian coordinates, involves more than one component, so that the
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simultaneous solution of the system is prohibitively difficult. As pointed out in the

preceding section, if the field is axially symmetric, the system degenerates for a

suitable coordinate system, and the solution is easily found in terms of a single

scalar wave function or potential. In the absence of such symmetry a more subtle

resolution of the vector function inquestion is required. For most physical

problems of the sort considered here it is advantageous to split the vector into two

parts, one of which is the gradient of a scalar function and is called the longitudinal

component, and the other of which is the curl of a vector and is called transverse.

The scalar functions involved must then be solutions of the scalar wave equation and

must satisfy boundary conditions xhich, at least in a system where this equation

separates, are easily determined from the original vector ones. Thus, we write the

longitudinal component as L =Vf, where j is a solution of the scalar wave equation.

Being a gradient, however, the longitudinal vector component will in general have

non-zero divergence, and accordingly will not be suitable for representation of a

source-free electromagnetic field, so that our primary interest here is in the

transverse component, which is divergence-free by virtue of its definition as a curl.

This condition ensures that only two independent scalars are required to specify the

vector quantity completely, and these should be chosen in such a way as to facilitate

the satisfaction of the boundary conditions. In general it would be desirable to re-

solve the transverse field into two component solutions, one of wnich is tangential
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to the scattering surface and the other normal to it. Unfortunately this is not

possible in most coordinate systems, but for certain ones of importance namely

those in which one of the scale factors is unity and the ratio of the other two is

independent of the coordinate corresponding to the first, something approaching this

objective can be achieved (cf. Morse and Feshbach, 1953 p. 1764). The tangential

component is expressed as the vector

SVA (aI1 )

where is the variable whose scale factor is unity, a is the corresponding unit

coordinate vector, w () is such that = 0, and is a solution of the scalar wave

equation. The third component cannot always be constructed normal to the first

coordinate surface, but at least its curl can be made tangential to it if the vector

function is defined as

k 1

with wo as before and f a solution of the scalar wave equation (which may or may not

be identical to orl, as suits our purposes). The possibility of resolving a general

vector solution into three components as described above, where the scalar

quantities involved separate in the usual way, is perhaps the most practical

definition of separability of a vector equation.

For the spherical coordinate system, this process has been carried out com-

pletely, (cf. Stratton, 1941), and one application is the well-known solution for
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electromagnetic scattering by a sphere, in which explicit expressions are obtained

for the coefficients in an expansion of the field in series of the M and N vectors over

the indices of the common set of scalar solutions from which they are formed. In

the spheroidal coordinate system, however, the vector wave equation is not com-

pletely separable in the above sense. The scale factors are such that the transverse

field cannot be resolved into components which permit the satisfaction of boundary

conditions by the individual members of the series, and the best that can be done is

to obtain an infinite system of equations for the infinite set of coefficients, which

can be solved approximately by truncation.

In the above forms, the vector was specified as 9 unit coordinate vector.
A

Actually solutions to (2.42) are obtained if A is any ;,onstant vector, or even the

radius vector r. This permits considerable freedom in the choice of a particular

set of vector funutions for a given problem, and me determination of the optimum

choice, i. e. the set which minimizes the labo.' or complication, is not easy. To

the best of our knowledge, the question has .iot been absolutely settled for the

spheroid problem, and we limit the pres nt account to an outline of the solution

which exists in the literature and whir i was given by Schultz (1950). This assumes

a plane electromagnetic wave incid nt on a perfectly conducting spheroid and

propagating in the direction )f t),a mjior axis. The generalization to the 'ase of

arbitrary incident direction FJds little of analytical interest.
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If a is an arbitrary constant vector and Oe1i) is a separated solution of the
mn

0
scalar wave equation, where the index i = 1, 2, 3, 4 denotes the type of the radial

function involved (the angle function is always of the first type), then application

of the forms given above yields the various sets of vector functions

(i) (i)
Lemn = V qemn

0 0

a(i) (i)
Me = V 0e A a (2.43)

a(i) 1 a(i)
n-VA Me

mn k mn

where the e and o subscripts denote even and odd 0 -dependence, as before. In

these we must first specify the vector a and then select whichever sets of functions

are best suited for representing the fields we are dealing with. As noted previously

the L functions will be of no use for the present problem since their divergence does

not vanish. Actually, in contrast to the classical sphere solution, the spheroid

solution of Schultz does not employ the N vectors either, Instead, three distinct

sets of M vectors are generated by substituting for a the three Cartesian co-

A A~ A
ordinate vectors 1 , 1 , 1 . The completeness of these sets follows, by a simple

argument, from that of the set of scalar wave functions (cf. Siegel et al,1953) so

that the possibility of expanding any solution to the given boundary value problem in

a convergent series of these functions is assured. In the particular case considered

47
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here only certain of the M vectors are required, and in the interest of economy we

will list below only those to be used. Detailed expressions for the rest appear in

Flammer (1957).

If the incident plane wave is assumed to propagate in the negative z-direction

with electric and magnetic vectors in the positive y- and x-directions respectively,

then a brief examination of the forms given above indicates that its electric vector

should have an expansion of the form

co

E e-ik - i Eiy =k e n (2.44)y- n -eon
n-o

(The choice of the even functions here is obvious with the assumed polarization, and

since it develops that only even functions are needed throughout the solution, we can

drop the e subscript with the understanding that all wave functions are even in J
unless otherwise stated. ) From the expansion of the exponential bi spheroidal wave

functions (equation 2. 36), and the definition (2.43) of the M functions, it is easily

determined that

n
A = 2 inS (1)/N , (2.45)n on on

If the spheroid E 0 is perfectly conducting and if the total electric field is

represented as

L Ei + s

Si+E s
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where E S represents the scattered field, then the boundary condition at the surface

can be written

Ai (2.461 AE0or + -(

0 0)s =

Now since the M vectors form a complete set, we can assume an expansion of t ,e

scattered field of the form

O OD (3 zM(3)
E ? + A3 + M y(3) + A Mz (2.47)

-Z \\nim n mn - mn mn-mn/
m=o n=o

The third type of function is dictated by the radiation condition at infinity. Each of

the three sets of M vectors has its own characteristic 0 -dependence which is ex-

pressed in terms of ordinary trigonometric functions, and since the boundary con-

ditions (2.46) must hold for all 0, the orthogonality of these functions may be in-

voked to reduce drastically the variety of M vectors appearing in the series (2.47)

for the scattered wave. It develops immediately on substituting the expansion of

the M vectors in (2.47) and applying (2.46) that the only sets of vectors whose

x(3) z(3)
coefficients do not vanish are Mon , andMln , andwe can rewrite (2.47) accordingly

as

E (A x () + A7 ) (248)-\n -on n l
n = 0

The essential problem now lacing us is the determination of the coefficients

and A in (2.48), to which end we moIt make \ hatevCr uLsW \\(, ',1 11i tfe
11 n
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boundary conditions. In order to see the exact nature of the difficulties we first ex-

press the M vectors in terms of the spheroidal coordinates using (2.43) and the

transformation of cocrdinate %ectors given at the beginning of this chapter. Thus we

have

A It 72 dS

M x  (I) Rsin (2.49)
-on F ,kr d n on

- AR(I) sin 0
F S Sond - on

+ I e s R Cos'
F 12) S on cos + (2 -- ) do) S on on

Z(3) (3) 7 +1 (3 ) i

1n FS R sin0 +__ _ (3)iIn F (2_ )( l 2) In In F 7 2)(2 .,172) In In

72 )  (3) (3( I )) 2 )

+ { _Y Rd inCos +R cosj

The third set, M x(3 is of course identical to"n exceptthat the radial function 1n(3)

-on ' -n exetta h ailfnton

appears throughout in place of R 1 . Substitution of these in the field expansions (2.44)

and (2.48), followed by application of the boundary equations (2.46) yields the two equa-

tions

1( - [d (1) = -I - d (3)

k , n 0 on on / 1.. 1 0 on) )d ,onn = o0 n - u

w0

A S R ( ) (2.50)
nI nn-o -
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00
77-) !( R (S +-o(I- T) d ( 71)R (8oISon(\7 . Io  dI1_.

jn d o onn =o o ) o

0

OD
_,- Ax y(E t) (7j) d (R3) lE) +(E _r2) (3)

Z A n on on do S (r R(F(0 (2.5i)L ~on on0
n=o

0

Clz -1F 1 I (3)1 2 S ( 3)1.
no n 0Rlnj)( I 0 d ) In In 'o

The essential complication of the spheroidal geometry now becomes apparent.

In the corresponding equations for the sphere, the angular dependence is such that

the orthogonality of the angle functions can be applied directly to give two simple

x zexpressions relating the known coefficient A and the two unknown ones A , An n n

with the same index n, and the scattered field is thu., expressed in terms of the

series (2.48). all of whose coefficients are easily written down. For the spheroid,

however, this is no: possible. The appearance of the scale factors and of angle

fu-ti(,.,s with two diflerent values of the index m makes it impossible to relate the

known and unkmo.vn coeffic;ents % ith the same, or even with a finite number of dis-

tinct indices n. Since there are no recurrence relations for the spheroidal

iunctions, there seems tv be no easy \\a around this (liffiCult\ , and the best one can

() is to obtain ,n infinite svA'Im oI sImultanotus i equations for the unknowns and re-

sol't to I 11"gte sCealh (e,)Lomt'ag p)rog'am1 101r 0, , ,0ltio.

I________... _ __I
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Such a system was constructed b3 Schultz in the following manner. Equations

(2. 50) and (2. 51) are multiplied by a function S (r), with r ranging from 0 t. Go,
or

and integrated over the range -1 < 7 < 1. The result is a doubly infimte system of

equations in the unknown coefficients An, A-, which can be written
n n

(C A + D A )= E a B (2.52)
(,rn n n rn

n o n=o

(V Ax= W A) E a U (2.11-3)
Z rn n rn n rn

n:: n=o

where r = 0, 1, 2 . . c, and the known quantities are

iA dR(1) 1

rn d I non on or dri
0o -

____ (IR (3)

St o S S d (
rn d - on or

o -1

D-t(3)1

n 0-11tno

-L T t) 1S S do)+ R1 M~ S (1do)
1'fl C 0 ~oll on or' 11 Jn (Ii 0)1o

() -1 -
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\T dR on nS S dri+g R r(I 12ri)-S dy7
rn o d on or oon Jd) r

~v ~~2~Id.R (3) 1 _(3)d

SI S dS~-R ()(4 2l2 r
rn 0o o dIn S nor ol+0 n F, d17 or dP

0 -1 -

I
WVith the exception S S OlS 01l ri, which is of course equal to N or6 ,n the above

integrals caninot be evaluated in closed form. The3 can, howxever, be expressed in

series of sphere:dal coefficients by simply expanding each S n in series of Legendre

functicns and usin., the orthogonality properties of the iatter. The octual ex-

pressions are given in Chapter IV.

The convergence of the above system of equations could presumably be demnon-

strated rigorously by straightforward methods, but this seems hardly worthwhile at

this point in view of the reaisonableness of Lhe results and the simple physical argu-

ments which support it. As noted p,'eviously, the system can be solved aIpproxi-

'faevby truncation. i. e. , by taking only the first N eqluations of ear-li set and

solving for dhw first ,pairs oi unknowns. The number N depends, of course, on

the iize (and eccentriclty) of the body and on the accu racy desired. The fact that.

over hall the terms in the sYsleli;- vanish i(Icnticall i.,. of some smiall benefit in the

comp)utatvi)ri tas5k, though til- gainl i. rat i rh~ ac( b\ I he CliTon m stance that
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the remaining ones are complex. Details of extensive computations based on this

soluti' "n and done on a large scale digital machine are given by Siegel et al (1953)

and Ritter (1956).

An expression for the scattered field in the far zone is of primary interest in

radar problems and can be obtained from (2.48) by substituting the asymptotic forms

(2. 15) of the radial functions into the expressions (2. 49) for the M vectors. Th--F nt

large distances r from the spheroid, the scattered field is

ikr OD E

ES_ e[n -A' S (r)) sinr5 it- n on
-- r

k6. a.),

+ [Ax nS.(r)- i A' € "f 2" (7l) cos

nI L n n SnI)

In the generalization of this solution to the casc of arbitrary direction of in-

cidence (Reitlinger, 1957) the field must be expanded in a double series,with the in-

dex m running from zero to infinity. The proper choice of the M vcctors becomes

even more difficult, and the matching of terms in the boundary equations by nans

of the 0 - dependence is 'Lot so trivial. The r - dcependence is also more complicated,

so that the matching procedure used above produces not only the *o integrals on-

countered there but albo numerous others of similar form, and leads to an infinite

The criteria for the validity ol these 1orms are tlt (cX )2 and
(0)>,a n
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et of inf'nite systems of equations for the expansion coefficients. The mere

transcription of these is a rather formidable task, and it is hoped that the reader

will never be faced with the necessity of using them.

Another extension of the wave-function soiution might be discussed briefly at

this point. This deals with the case of a dielectric scatterer. A radiation problem

of this type was treated by Weeks (1958). The case considered is that of a

homogeneous dielectric spheroid covered by a spheroidal shell of another dielectric

and excited by a transverse slot at each of several locations. This type of ex-

citation is strictly outside the range of the present report, and the de~ails of the

solution will not be given here, but certain of the results are included in another

section. The gene.ral technique, i. e., method of representation of the fields, is the

same as in the case of the perfect conductor, but here, of course, the field interior

to the body must also be considered. The problem of matching the fields at the

boundaries is even further complicated by the fact that two different values of the

wave numtbr k are involved, and since this appears as a parameter in all the

spheroidal functions, the orthogonality relations are further restricted. Instead

of multiplying the boundary equations by a spheroidal function and then integrating,

as in the solution of Schultz, it is necessary to expand each angle function appearing

there is series of Legendre functions and then employ the orthogonality properties
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of the latter . The result is again an infinite system of equations in the infinite set

of unknown expansion coefficients for the radiated field, numerical treatment of

which requires a large scale computing facility. The convergence properties of

this system would presumably be similar, though not necessarily identical,to those

of the system constructed by Schultz. This question has not bec -i thoroughly in-

vestigated, however.

A variation on this procedure has been given more recently by Yeh (19631 who
published a formal solution of the same problem, presumably being unaware of the

existence of Weeks' earlier and more exten.3ive v ork. In this paper the angular
functions pertaining to one medium arc. expanded diectly in terms of those of the
other, the coefficients being expressed as series involving the two sets of dm n .

The two solutions are essentially equivalent, and it is not immediately clear which
form is preferable. In an earlier report by Johnson (1955) the problem of the

dielectric spheroid was attacked by means of a set of approximate vector wave func-
tions, which satisfy the wave equation only in the far-zone limit. The procedure
used in determining the expansion coefficients of Lhe reflected and transmitted wavcs,
namely that of applying the boundary conditions to the various series in terms of

these functions, would seem to be of very doubtful validity except in the case of a
nearly spherical scatterer. The solution should thus perhaps be classific) %ith the

eccenr'iL, y-restricted approximations, but the region of validity might be difficult
to determine.
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Ii
III

APPROXIMATE SOLUTIONS

3.1 FREQUENCY-RESTRICTED APPROXIATIONS

The kave-function solutions detailed in the preceding chapter have been called

exact because it is theoretically possible to carry them out to any desired degree of

accuracy. In practice, however, this presents serious difficulties. So far little has

been said about the convergence of the series involved, but it is not hard to show

that this becomes slower as the frequency increases, and as in the case of the

sphere, for a given frequency, the summation indices must reach a value consider-

ably in excess of ka in order to yield any reasonable accuracy. For the scalar

problem with symmetric excitation, the exact solution has been carried out to a high

degree of accuracy fr certain spheroids at frequencies ranging up to a value of

ka=:4. For the vector case, however, even with plane wave incidence in the axis of

symmetry the few existing computations are accurate only out to ka='3, and for

other directions of incidence, no computations have even been attempted, to the best

of our knowledge. The need for approximate solutions which offer reasonable

accuracy at tolerable expense is thus obvious, and several of these have been

developed. None, of course, is useful over the untire ranges of interest in all the

paramneters, and the natural basis of classification is the parameter or parameters

restricted and the raloges of validity,

_________________________________________ _________________________________________________
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Perhaps the most important parameters in this respect are wavelength

(relative to characteristic dimension) and eccentricity. The material propertics of

the scatterer may also require consideration, and seve:al investigators have

developed solutions based on the perturbations of these propertias with reference to

the surroanding medium; these will be discussed presently. By far the greater part

of the existing approximate theory however, depends primarily on the aforemen-

tioned geometric parameters. We will deal first with the matter of wavelength or

frequency, and begin at the low-frequency end of the spectrum, which is generally

referred to as the Rayleigh region, after the author who provided the first systemat-

ic treatment of low-frequency scattering (Rayleigh,1897).

3. 1. 1 L-w Frequency Approximations

When the wavelength of the energy incident on a body is large coin-

pared to the characteristic dimension of the body, then ka is small, and this im-

mediately suggests a series representation for the scattered field in powers of this

quantity. This series is usually referred to as the Rayleigh series, despite th2 fact

that Rayleigh's original contribution only yielded the first term. In general it afford

the easiest and most universally practical way of obtaining the scattered field of an

object in the region of the spectrum where the first few terms pr( xide sufficient

accuracy. Its use at higher frequencies is limited absolutelx by the finite radius of

convergence of the series, and uracticall , of course, by the difficult} of obtaining

the coefficients for the higher order terms, especiallk in the xector ease. Besides
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the obvious advantage that o:±ce the coefficients are known, the scattered field is

immediately obtainable for any wavelength within the region of effective convergence,

this solution has the further merit that the cases of arbitrary incident direction and

shape and material parameters present no essential difficulty. It is thus the most

general solution known, the only important restriction being that of large wavelength.

To date, the coeff. ients in the Rayleigh series have not been obtained

explicitly beyond the third, or in certain cases the. fourth (non-vanishing) term in

the far-field expansion. There are perhaps two principal reasons for this, the first

being the fact that the .,ajority of the methods presently available either break down

completely or have not been developed sufficiently to yield more terms, or would

involve a prohibitive amount of algebra, and the second, the fact that the limited

region and non-uniform manner of convergence of the series (cf. Senior, 1961)

seriously restricts the advantages to be gained. The first extensions of Rayleigh's

work were produced almost simultaneously by Tai (1952), and Stevenson (1953 a),

who developed quite distinct methods for obtaining the next non-vanishing term

4 3
(which is proportional to k in the far field series , the term in k vanishing

, ikr

The term "far field" is used here to denote the coefficient of - in the scattered
r

field expression, in contrast to th,,, treatment below, where the coefficient of

ikr
e-r is considered.
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identically for a body with a centr of symmetry). The two derivations have been

discussed and compared by Justice (1956) and will be outlined below. The third non-

5
vanishing term, proportional to k , was derived by Senior (1960) for the scalar

problem with nose-on incidence and either Dirichlet or Neumann boundary conditions,

and by the same author (1964) for the vector problem rwith a perfectly conducting

spheroid. (In the latter work on'y the coefficients in the po% er series expansions of

the wave-function coefficients are given explicitly, but from these the Rayleigh

coefficients are easily obtainable.) Additional pow er series coefficients in the scalar

problem a-e also given by Senior (1961), but these are not sufficient to ex.end the

Rayleigh series for the far field beyond the term mentioned above.

For the scalar problem, the Rayleigh series is obtainable in a straight-

forward manner from the exact solution b3 simplr: substituting power series ex-

pansions for all quantitks ' hich depend on k and then rearranging terms and

collecting coefficients of like pox eis of k. Logically, of course, this procedure

might be termed reverse, presupposing, as it does, a know_'ledge of the exact solu-

tion and of tie fimctions in terms of which the latter i natu.'ally expressed, and

yielding only an approximate form ;'ith a more restricted range of validity. How-

ever, the method ,s easily justilied on practical grounds, since in the cases where it

It should he noted that the statement ot Sleator (1960)(also in Crispin ct al, 1963),
that the coefficient of k5 vanishes fuir the hard (scalar) spheroid, is i error, as ts
111c. alue given for the coefficient of 0 . The corrected curvc of cross section vs ka is
shown in Fig. 14.
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is applicable it offers the easiest access to the above-mentioned advantages of the

po'.er series representation for the scattered field. Accordingl3 we defer any dis-

cussion of Rayleigh's original derivation until the consideration of the vector problem

where the exact solution is not kno vn in such generality and ihe advantages oi

Rayleigh's methods are thus more evident.

The exact solution for the scalar problem with incident plane wave and

linear homogeneous boundary condition was given in equation (2 24). For the sae

of convenience we now restrict the incident direction to the axis of symmetry and

consider the limiting cases of the hard and soft spheroids (al , = 0, wc, resuectively)j

separately, %kitn the observation that the general impedance solution ca- bc easily

reconstructed from these. Following Senior (1960) we can write the tar field

amplitude for the soft body as

OD So(,I (1) C' )

T S on=2i c, )on c3  (c, r) (3.1)-s- (3) oon
n =o on R onc,)

on

where f (j) is defined by the relation that if Vs is the scattered field in the far zones

then

ikR

s kR

(Note that this definition of f difer- slightly from that used elsewhere by virtue of

the k in th( denominator ol the ,\pression for Vs . ) When the spheroidal functions
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appearing in (3. 1) are expanded in Legendre functions (cf. equations (2. 7) and (2. 17))

their dependence on c is contained entirely in the coefficients, which are either the

dan of equation (2. 7) or are directly obtainable from them, and by using the
r

mnrecurrence relation and normalizing equation which serve to define the d , ther

expansion of these in powers of c is easily accomplished, at least to a reasonlble

number of terms, (see Senior (1960) for details. ) If we then write the Rayleigh

series for f as
s

gW (CD

f (n) c Z u (,)(-ic)n, (3.2)

n =o

the functions u (n) are found by collecting the coefficients of like powers of c in then

comp.etely expanded form of f . The expression analogous to (3. 1) for the hards

spheroia is identical to it except that the radial functions are replaced by their de-

r-vatives with respect to , so that the requisite expansions of these are in terms of

the derivatives of t~te Legendre functions. The same procedure described above

applies herc, and the functions v (.i) in the Rayleigh expansion for the far fieldn

amplitude

Co

vh1 ) C -e v (r))(-i c)n (3.3)

n = o

are thus (etermninCd. 'Ihere are substantial differencts in the t\ o results, in that

the functions V and x3 for the hard 1 )0(t\ \anih identicallx, Oicw.rcas none ol
-
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the first six u functions in the soft case vanishes. The corn I ete frms for the two sets

of functions are listed for n = 0 ------ 5 in Sec. 4. 1.

The radius and manner of convergence of the series; (3. 2) and (3. 3) are dis-

cussed P Length by Senior (1961), and the details are too iii;ohed to be treatitcd fully

in the present work. In general the radius of convergence can be detErmined oy con-

sidering the coefficients in the wave-function (exact) solutirn as fnctons of the

complex variable p ka and locating the pole of least amp.itude among all the poles

of all the coefficients. For the sphere, this minimum amplitude is unit% for both

the soit and hard cases, and the Rayleigh series accordingl converges onl\ out to

the value ka = 1. If the sphere is elongated in the direction of incidence, so that a

is the semi-major axis of the resulting prolate spheroid then the radius of conver-

gence increases for both hard and soft bodies, though in a different manner for each,

approaching the value ka - 4. 1 in both cases as the spheroid becomes an infinitely

thin rod. For all values of the eccentricitN bet'keen zero and one, the radius of

convergence for the hard bod% exceeds that 1'or thc soft, the greatest difference

occurring when the a>is r,.tio is arour' .0? , Nhcre its magnitude is approxi-

matelN 2. 0. The above discuss~on .pplies onlx for the Dirichlet and Neumann

boundarN conditions. For the general linear h,,mogeneous boundar condition (2.22)

tCie situation is much more complicated and the conurgencc radius can be expCted

to dI&crease as the ratio a/ departs from the values () Or co.
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For the vector or electromagnetic problem, the derivation of the Ra:.eigh

series is predictabl, more involved, and several methods have been used for the

determination of the first three terms in the power series for the scattered field.

Two of these are the previously mentioned solutions of Stevenson (1953 a, b) and

Tai (1952) which have since been elucidated and compared in a report b- Justice

(1956). To date no further t,: rms have been derived for the vector case, nar has the

convergence question been discussed adequatel3, and the predictable accurac) -f the

solution rests primarily on a comparison of particular resuLts Nkith thnsc gixen b., he

exact solution, as presented in a later section of this report.

In view of the difficulties inherent in the derivation of the complete Rayk; igh

series, and as a matter of historical interest, it seems appropriate to discuss

briefly Rayleigh'.- -cigina) derivation of the first term, which he accomplished b

means of a quite general and -cmarkably simple line of argument. The dei ivation

assumes the existence of a region wher. e the distance from the scatterer is large

compared to its dimcnsions but small compared to the wa-Vlength ol tht incident

field. Here the solution is basicall that of a static problem, and once this is known,

the field at a larger distance can be immediately foun.I from the known properties

of spherical harmonics. The method is essentiall the same for both scalar and

vector problems, and the material properties of the scatterer are eabil!, taken into

account. We considi r here ordl the electromagnetic problcm f0 a I)mogtnouS
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ellipFsoid of permeabilitN p' and dielectric constant El in a medium of corresponding

jcinstart--- p, E struck bN a plane wave propagating parallel to the major axis. In the

interest of readibilit and consistenc , we will modifN Ra leigh' s notation to agree

witlh our previous usage wherever possible, and accordingly v e denote the major

axis by 2F and let itcoincide with the z-a.Nas. The electric and magnetic vectors of

the incident wave in the region exterior to the spheroid are then represented as

1 -ikz,
E E e

(3.4)
H' ~F E' ikzi

- p x

i
where E , the amplitude of the incident wave,may be normalized to unity. In the

neighborhood (,I thc obstacle, under the assumption that k.,, is small so that

e i-z 1, tht- incident electric and magnetic fields are derivable from two scalar

potentials, I. e.

(3.5)

.Vithin this region the scattered field is also der.ived from potentials, which

can inI general be expanded in series of spherical harmonics in thle form

s CC n V rn
' 7 '\ AC P ~j (cos 0 -n r

III j nnI
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Since there are no sources present, the term %kith n = 0 must vanish. F'urther-

more in the region of interest, F << r << .,the terms with n > I are
0

negligible, and the potentials reduce to
I

ezm Ali I(cos 0) e r
j--1

which may be rewritten in terms of three new constant6 as

s (e,,m eAem e, m 3A x + A y+- zj /r
e, m y z

If we f.unsid,.r theE-e constants as the rectangular components of constant vectors

A , M, then the above potentials can be written

=-V (A e , r)
e, ni-

and the 'scattered' electric and magnetic fields in this intermediate range

( /r>> 1/r , kr<< 1) become

(3.6)

H =- E r •

These expressions are not adequate to represent the far field, for when ki is

appreciable the magnetic potentia' contribotes to the electric field and x ice ',ersa.

To deal wvith this region ke use a Ilertz vector representation, noting that anN

field may be written in terms ol electric and magnetic Ifhrt/ cctors ,s follok,,
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(see, or example, Kleinman and Senior, 1963):

_-7, (3.7)

Es  VA 'r +i t VA1r =V (V" 7r )-V r + ikj VAir
-e -m -e -e -m

H S -V"AK7A 7r" it~j E A ?r V V( VT * r V_' 7r - Fk, T1

- -m -e -m - m f A

If the vectors ,r and -, are specified as dipoles located at the origin, then-e -

ikr ikre e
r = _ C ,, = C (3.8)

-e r -e - rn r -m

where C and C are constant vectors (i e. dipole moments.) Furthermore

in the range where kr - 0, we have

C C
7r z e  and 7 "r (3.9)
-e r -m r

so that 3. 7) becomes

C

E =V(V" ' ) 7r =V( V * -U) (3.10)-- e r

CC -m

1 v ( *'7r )-v(" -")
m r

Identifying (3. 6) and (3. 10) we obtain the expressions

C = -Ei Ae C .- r' Ei Am(

-e -m (3.11)

and the far field is then given by (3.6) , (3.8) and (3.11). This approximation to the

field is thus completely defined once the constant vectors A and A are-e -m

specified, These are obtained b3 considering the static problem for Ihe spheroid.
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Rayleigh gives the solution to the static problem in the tollowing form. If the

impressed field potentials i have the form
e, m

i
= ux+ vy + wz

e, m

for some constants u, v, w, then the vectors A e, m have components

uVK vVK wVK
Ae,m e,m Ae,m =  e,m , Ae,m  e m
x I+K L y I+K M z 1-t K N

e,m e,m e,m

where V is the volume of the spheroid,

K =(E/E-1)/4z
e

K Wp/ P- 1)/47rm

0 0
L M j 2t - 2 Jlog

0

and N -4wr(g 2 -1I o o +1 •

In the present case (3.5), Oe =y, i.e. u w=0, v=1, and thus

e A Ae  V(E'-) _)

A x = 0, y (2 1) +1
47rc +27r(E-E)E2 0 0 --

and = x, i.c. v w = 0, u =1, so that
m

A m=A M0 AMY~--_____z ) +1
4x p -2 7r(P ' -/.x) 2 02 0 log 0
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In the case of perfect conductivity, E'-co and p'-O and the expressions

become

e -V m V

24-r - 27 2 logo 12
2,r 2 2 g L7-7 4 .O 2

With these constants thus defined, the scattered field of a plane wave incident along

the axis of symmetry may be written explicitly as

ikr/ikr
E-sE i I17A17 -i+i~mV- r X r x,)

(3.13

(&krQ^ 
1 {7AAtX ~ikA~e VAHs  s_ Ei  A x \ A V /\ ( - - 1 AY

y

or alternatively

s + ikr ikr +kAm e i1% }E E VL + k2 +ia~ E y r rx r x

. ikr ikr ikr
H Ei A (7 e+k e _ikAe .A '-_H = x 0x rry ry

For the particular case of back scattering (x y = 0) these expressions reduce

to

i \ ikz
E2 ± y 2) e xE-E (A 2 =+k -LA _ I M- (2
- x=y=O y z y

Et = -, n +i * -A e  (k + k 2 k
= 0= V2y z x
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and the back scattering cross section

lim z ES  4 (Ae;Aor -i z'o - =47 k4  -A m l (3.14)

If the spheroid is reduced to a sphe :e, i.e. if we let F--> 0 and F 0--o

while Fg° remains fixed, then

9 (g2-i) +1 22 _ 0o log o01__

o 2 lo - 3

and Ae - 3V Am --> 3V

y 4,r x 87r

and the expression (3. 14) for the cro s section thus reduces to the well-known

Rayleigh cross section of a sphere,

r=- k' V2

Before proceeding with the derivation of subsequent terms in the series, we

note a simple argument given b3 Siegel (1359) which leads to an approximation to

the Rayleigh coefficient obtainable with very little effort. This is based on the con-

sideration that when the wavelength is much larger than the bodN dimensions, the

details of form are not distinguishable and the principal t ffect of the body depends

only on its size, i.e. volume. The dominant term in the scattered field should

th.s be expressible in terms of the volume plus a correction factor indicative of the

general shape. This is verified in the folloking manner for the case of a plan. wave

incident on a perfectly conducting surface along the axis of symmetry.

,p,, mr q" ' +" +! " ''1 ... ... iT : " " l'! I.... , =" 1" I| I M "il'I= j
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The general multipole e .pansion of the scttdr aefw

.... erd or radiated field shows that

for the Ravlei-rh region a good approximation to the far-zone field is given by the

dipole term alone. This in turn can be found by integrating the field strength

-multiplied by the moment axis over the surface, if the former is known. If the

observation joint is on the axis of symmetry, the integral reduces at once to the

form

2
7rp 2 a(z) dz

0

where p, z are cylindrical coordinates of the surface, / is the length, and a(z) is

the amplitude of the field on the surface. (The electric and magnetic fields are

treated in identical fashion and contribute equally to the scattering cross section).

If 0max << 1, i.e. if the body is elongated, then a(z) is slowly varying over the

range of integration and maN be approximated by a constant which, in analogy with

the case of a plane surfac.;, we may take to be twice the amplitude of the ino.uent

field. Undei 'hese assumptions the far-field amplitude of the electric vector, which

is the sum of the contributions of the electric and magnetic dipoles, becomes

1 k
E=- k2 E V

7r

where Ei is the incident amplitude and V is the volume. For a general spheroid,

prolate or oblate, the correction factor can be ascertained by comparison with the

exact Rayleigh result. This is given by Siegel in the form

7 l I l ll i l l ill
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b -a/b
r a

where a is the axis of symmetry and i is the transverse axis. 1 he agreement

with the true riayleigh coefficient is within one percent for anN eccentricity. The

nose-on backscattering cross section is then

a k 4 V b _-a/b 2

It is not at once apparent how Rayleigh's formulation could be used to derive

r"bsequent terms in the low frequenc3 expansion. The problem becomes surprising-

ly involved as soon as the dynamic terms are introduced, and the details of the

existing solutions are too voluminous to be included here in their entirety. We will

limit ourselves to a general description of two independent extensions (f Rayleigh's

result, which more or less parallels the account given by Justice (1956).

The two methods to be deseribed are those of Tai (1952) and Stevenson (1953)

and following Justice we will refer to them as the vector mode function method arid

the potential function method respectivelx. Both sulutmons are based on thc assump-

tion of power series representations for incident and scattered fields of the form

E ll =  E nl" ik)n

n
(:1. 15)

ifI, s = I.*s (kn|_b = Hs(ih)n

-nn =O

and the applicability of tne results is naturall, Linited I0 CISt.s hCre th.,c(

representations are xalid. Since the po ,c se , tntatl n .i nlJt'
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provided it exists, the two methods muzt produce equi. alent results in the region

whern ? both are applicable. They d;ffer, ho'hever, in generaiity and range of

applicability. The potential function method is superior in these respects and can

theoretically be applied to any body for which the requisite potential problems can be

solved, with arbitraly incide,,t fHAd and material characteristics, and it can be

carried out to any order de.,ired. The solution is given in detail by Stevenson (i9530

for a general c!lipsoid of arbitrary materiel %ith plane wave incident in any direc-

tion, oarried out to the tY-:rd order (the second order term vanishing as in the scalar

case.) The vector mode function method becomes extremeiy complicated foi off-

axis incidence and is apparently not applicab!e for terms beyond the third. It was

originally applied by Tai to a perfectly condu.ting oblate spheroid with symmetrical

incidence, and subsequently to a prolate one kith the same excitation by Justice.

To facilitate the description and comparison of the methods, e %%ill consider here

onlh the latter problem. The more general results of Steienson are tabulated in the

appropriaz:, section be'iow.

if tne material constants of the media are incorporated in the metrics of the

field %ectors (i.e. if Gaussian units are used), then Maxxell's equations can be

%%ritten in the form

-A iki l, H " -ikE

(3. 16

7 E ='7 I=4'
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Also if n if the unit normal to the scattering surface, thf.n for a perfect conducto-,

the boundary condit.ons take the form

AES=- nA E , ' -Hi= Hs  (3. 11)

Equations (3. 16) and (3. 17), along %ith the radiation condition on the bcattered wave,

constitute the mathematical statement of the problem, and an combining them with

(3. 15) and equating coefficients of like poiers of k, there results the set

i,s i s i,s is
7-A E =VAH 7 - E 7V*H 0"/-o -o -n -n '

ever3ywhere (3. 1 d)
A i s = H i's VAHi,s Ei, s

-n-' -n -n-1

s A A S i
A A , n H H on the surface. (3. 19-n -n -n -n

Furthermore, by t-he divergence theorem,

i. ' ds n H" ds =0 (3.20
-n -n

where the integration is over the surface of the scatterer.

These equations form the basis of both methods of solution, and despite

their apparent simplicity, it develops tha' the procedures required and the forms

evol,,ed in (ithcr method rapldly become highl 3 compkx and xoluminous for the

higher order terms, so that ke must limit ouisektcs here to a generad ,sC.riptiun and

refer the reader to the above-mentiohed sources for the details of the mothods.

,4
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In the %ector mode function method, the next step is the repeated applicati:n of

the curl operator to certain of the equa.:ns (3. 18), to yield at once the vector

differential equations

s s
VArAE VAVA H IO

(3. 21)

V A 7A 7A E2 7A VAV A I =O0
-, -2

Tiie problem then is essentiall) that of representing the incide.nt and scattered fields

in terms of solutions of these equations and the first of (3. 18) which have the proper

ty-pes of radial dependence and %Nhich permit the satisfaction of the bounda.- con-

ditions on the scatterer. Considering the limited m~ailable kno'-,Qedge of general so-

lutions of these types of equation, this process is necessarily more inductixe than

deductive, and it is easily inferred that a thorough study of the intimate character-

istics of the sp~heroidal system, must have been requ~red for its completion. The

process starts w ith tl~e formation of two sets of spheroidal harm( nics, 0 ,sand
0

"swhose gradients satisfy the boundary conditions on Ei and Hfi re-
0 -o0 -0

spectixel3. These gradients automatically satisfy the xector equations given above

as \%ell, and from them mor 'ector solu~tionIs can be fornled "I a manner similar to

the. construction of llansen's %ector -,axe functions. Tht. spherdoidalt harmonics, as

poiflt(d( out in Section 2. 1, are eabiI3 .onstructed Iron, Legcndre and ti igonometric

funcIrons. Sp(clt caIlix, \% ec3II \ IleI
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m
m m (7) n (3.22)

~mn Pr: (T)Q 2 { ) sin m~

with the choice of P or Q functions determined by the desired behax ior as E--->,

and that of cos or ,in by the required 0 -dependence. The gradients of the first two

sets of these potential functions are required to satisfy the boundary conditions (3. 19)

i, s i, S
on E and H , and the additional vector solutions nectssary for the rcpresenta-0 o

Lion of the higher order terms ai the field expansions are e-.;ressed as linear com-

binations of certain of these harmonic functions and their gradients, multiplied in

the approprate manner by certain rectx,1guiar cr sphei i.:al coordinate vectors. The

choice of an adequate set of such functions for the representation of the incident and

scattered fields and the proper construction of this representation is an inductive

process too complicated to be described hcre in detail. In general it entails the ex-

pression of the first three terms in the incident field expansion in terms of five dis-

tinct vector mode functions, chosen on the basis of their angular dependence, and

several aroitrary constants not uniquel, determined by the incident field alone.

Each of these five functions is associated % ith a corresponding iunction in the

scattered field, and the boundary conditions, irclu(Ing the ra.WatMon condition on the

scattered field, are applied to each mode mtdix idually. If the various functions and

combiot ions t'axe been properl. hosen thii process determines uniquely all the

constants app( .li'g, amd the oIklUtl )fl (o the I bl(, I Sb COmIlCtC out to the third
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term in the power series expansion. It should be noted that aside from t.e tre-

mendous increase in complication -,%Iih would result from consideration of terms of

still higher order, the method would apparentl3 break down completely, since it has

been shown by Stexenson that the terrns beyond the third in the scatterec field do not

satisfy the radiation condition individually, but only collectively, and without this

condition on each mode it is impossible, b3 the present method at least, to deter-

mine all the unknown constants involved. Some of the explicit forms evolved in this

soiution are tabulated in the appropriate section below.

In the potential function method devel)ped by Stevenson the first steps are the

same as in the previous method. It is a trivial matter to find potentia! functions
i i

-0 0o %hose gradients match the first terms of the incident field expansions, and

the first equations of (3. 18) and (3. 19), together with the required behavior at

infinity, then define standard Dirichlet and Neumann problems for the potentials

,s, s , respectively, such that E = " ', H s = V . The next stage, how-
o 0 -0 --0 0

5 Sever, cannot be reduced to potential problems alone, since Es, and H are not

irrotational vectors. The procedure is lo write each of these as the sum of an

ir rotational and a solenoidal component. The electric vector, for example, is

yritten

Es = F + 7 V s (3.23)
1 -I I

\,here F I has zero divergence, vanishes at mnfinitN, and satisfies the equation

-1 77
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VA I  
i  (3.24)

and Os is therefore an external harmonic function which must satisfy the boundary

condition

A s=-' [F+E1 (3.25)

Determination of O is thus again a standard potential problem, once the particular

solution F of (3, 24) having required properties is found. If the right hand side of

-3
an equation of the form (3.24) vanishes at infinity at least to order r and if its

divergence is zero as well ao the integral of its normal component over the scattering

surface, then we can write an integral expression for the solution which, since 11s
-O

satisfies these conditions, in this case has the form

F V J_ "A dv (3.26)47r -0 r

where dv is the volume element, i is the distance btween observation and inte-

gration points and the integration covers the entire space, including the interior of

the scatterer. In order to complete the definition of this integral, that of 11s n',st be cx-
--

tended to cover the interior of the bod),, Since 1I satisfies the latter equation of (3.20)
-0

this can be done by finding an internal harmonic function (,s. such that

nS =o 0 = n 0 (3.27)01 -o o

on the surface, which is an ordinary Neumann potential problem. B3x nnking Li-.,cA

the form
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VA 1 ) dv = A A dv

d r j -o)

we can write finally

- oAV dv + V s AV d + (3.28)

where the first integral covers the exterior of the scatterer and the second the

interior, and s is the potential satisfying (3.25) with F1 given by (3.26). The
s

magnetic vector H is constructed in analogous fashion anti can be writtea

s = _..4AS AV d+ Vo(3.29)

I

with o, o i defined by standard potential problems as before.

The procedure for finding the next term in each series is similar to the above,

but here the situation is complicated by the fact that Hs and E vanish at infinity
1 -1

-2
only to order r , and the integrals corresponding to (3.26) a.e accordingly

d, ergent. This difficulty can be overcome by constructing another pair of external
s s s

harmonics 01, , e whose normal derivatives match those of E and 1-1 on

some surrounding surface 1 exterior to the scatterer, which can be arbitrarily

large. We can then write for the electric field

s _ + V (3. :30)-2 -2 2

with F 2 given in the region E < bx the form
0- -A
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Cv U rf~A+ AV( v AV(.jdv
-2 lilsVrJ r l r

(3.31)

(Here s is an internal harmonic whose normal derivative matches that of ( s on "

For > gl' however, this expression is of no use, since here it yields

VAt F2  Se HI, and thus the function 2 is not yet determinable as an

external harmonic. We are forced to resort to asing another type of expression for

the field vectors consisting of surface integrals, of the form

Eis ik R5 AHi' ds+ VAj AE' s ds -V En" ds (3.32)

ikr
e

where 4r r , r is the d: stance from a point on the surface to the field point, and

the integration covers the scattering surface in each terin. When the field ex-

pressions (3. 15) and the standard exponential series are substituted here and

coefficients of like powers of k are collected, there results a set of equations in the

components'E H , of which the pertinent one for E is
-mp net E -fHl o w -2 i

4 2 =  r 2 H - o -

- r E ds - I Sr E ds (3. 33)

(The remaining terms wvhich apparently enter con easily be shown to vanosh. ) The

second th.l' can bt % 'Itten in tl'ns1 ol the kllnu li tuntions F I )-1,h rtuc o)I thle
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boundary condition (3 19), and substituting (3. ?0) in th! fourth term, we can

write

E = F'2 +V 
(3.34)

IA S A\vith 4?r F' A Hs ds -7A - A E ds-2 r -1 r 2

SA s i ES+ 7 A rg AE ds -- V r E ds
2-- -- O

Vjr - F2 ds (3.35)r 2

and

7-v S" S ds. (3.36)

The value (3. 31) for F can now be used in the last term of (3. 35) and F'-2 - 2

is !hus completely determined, and furthermore it is easily shown that both E 2 and
-2

F? vanish at infinity, so that O2 is an external harmonic function and is thus de-

terminable by means of the boundary condition given by (3. 19), (3. 34), and (3. 35).

The determinition of -2 is now complete, and that of i2 is perfectly analogous.

Steveison makes the statement that the general inethud described here can be

carried out to liny order desired. However, the success of the method with higher

order terms depends on the abilit to find particular functions F to represent the
-n

solenoidal components of each trm, and lurtlirmiorc the fact that the tield con-

ponents . r 11 ndo not vanish at nml hnit or i , 2 rcnder, the problem of finding

~r1 -n
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the irrotational components 7 more diff icult. The details of ho~k these diffi -
n

culties might be overcome have not been published.

Another difficulty -~itli this representation arises when the far field is

c-nsidered. The behavior of the higher order terms indicates that the given series

Sbecomes useless as r increases without limit. A new- representation, however,

which is valid c-verywhere outside a large sphere surrounding the scatterer, car, be

Iderived irn a mnanner similar to that used by R~ayleigh to obtain thec far field repre-

Isentatiun fromn that uf the near field. In the paper of Stevenson that is accomnplished

b3 writting the gene-al expressions for, the components of ain exterior E (or TM)

wzve and an H(or TE) -ave in terms of spherical wkave functions and expanding the

radial cornpolnts in double power series in k and R. Each coefficient in the radial

comiponent of the ziear-fieid series determined earlier ib then ex-panded in powers of

R and mne two expansions thus obtained are compared, term by term, yielding a

jencral relation between the individual surface harmonics in,,olved in the expression

oi the far field and those Df the near fiela. Oice the latter are obtained from the

J res ious analysis, the far-field expression6 are easily written dowkn. It develops

also that no accuracy is lost in passing from the near to the far, field, i. e.,

:117;lede of N Wcrms in the near-field series gixes at once N terms of the far-field

seris. ne xplici exresion fo th fa- feldare given in Sectioi- I.J1

Stil inte nithdo oiig h etrRNbih eisu ecie

by~~~ zlj-r 94. 1'hi , is pe(rhap)s nikic st Iaiightfor% ai d( ano schcniatiwallx sijl



THE UNIVERSITY OF MICHIGAN
3648-6-T

than ether of the above methods, and there are no analytical difficulties in carrying

it out to any arbitrary degree; however, again the quantity of iabor involved rapidly

approaches a prohibitive level as the number of terms increa: es, and to date the

forms have been worked cut only as far as those in the previous solutions, and only

for a conducting spheroid with plane wave incident nos,--on.

The first step in this procedure is to expand the incident and scattered

fields in tern's of appropriate sets of Hansen's vector wave functions. The question

of optimum choice of these sets is still more or less open, but for reasons of

simplicity and generality the oncs chosen were based on the radius vector r , and

.vxith this basis and with the assumed incident field, the only sets of vector functions

resulting are the Me In and Neln, as defined in (2. 43) with r replacing a . In
0 o

particul,r the scattered electric field has the representation

E = t (A nMOIn+ B INe (3.37)

with the coefficients A , B as yet undetermined. The %vector functions may benn

expressed in terms of the prolate spheroidal coordinates by formulas analogous to

those of (2.49), and using these forms and the explicit ex)ression for the incident

electric field, which is

-1 - T2 1 e Cos 0 -1 si, (3.38)

the I)ot1nia ry conditions on the surface (2. 40) becom(, after some manipulation,
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(3) 
()n = 1 n LI

-2 (_2 2 _ I1-i .. 2) S' (c, 77)R ()-2(E 2 -1 ,.2 Sn (c, (c {)
in in -n; 'in In

+(g 2 _ 1 X 2 _ 172)(1 _V7n2 ) Fs n(c, Y7) + r.,S, n(C, 77)_ Rt n-3) (C, 9) 1

_a rg 2 -2) S n(c r/) R (c(, )-(-i)n-l(n-l)(cr75) _0 .*2* ( 2-1 -

n=i

and (3.39)

n = c (C 3)i (2 _3 ) (In-

_ Sn(C 7Rn - rl 2, n (c, Y7)- I!n (C, ) R In (c, T7)R

( 2 _..)(I .- r( 2  ) )

+ i-i (c g )nfl_1iIT7

where is the coordinate of the scattering surface and the primes indicate differ-

entiation with respect to or 7" . All quantities appearing here which depend on c

are now expanded in power series. These include the coefficients A and B , t'e

eigenvalue X In, and the spheroidal functions, which must be expressed in terms

of the corresponding sets of spherical ones. The magnitude of the task no% be-

comed apparent. It is not hard to show, however, that once these expansions are

inserted and the coefficients of like po%ers of e collected, the result is an

e 4
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tsz.ntialx triangular sv_-ttm ,.! equationz in the c,,efficients in the po%.er series ex-

pansions _4 A and B n so that these can be dtermined sequentially out to any order

dcesired. Again, the explicit forms %% ill be tabulated later.

One more attack on the scalar probiem might be dscussed briefly here,

th..gh from the standpoint of g,-.nE rality and rate of convergence it might equally

.MAI bte classed as an exact solution. This is the Schwinger variational techniqae

fur the solition of an integral equation, as applied to the problem of a hard spheroid

.%ith nost.-on plant- .%a-c ncidence by Sleator (960). The formulation of the integral

equation for the .elocity potential of the total field is standard procedure, and the

equation may be % ritten
I-

0(r)e ikz WG (r, r') da' (3.40)

%k here r is the field point, r' Le source point. dG~r, -.s ti e normal deri- ative)n'

of the free space Green's function, and the ntegral covers the scattering surface S.

Direct application of the boundar, condition

I 0(r) z(3.41)

IS

to (3. 40) gives

tin -ikz 1 4r') (n2 G(r, r')da' (3.42)onl S 47r 0~nOtl

It has been shown by iuneb (1 56) that this technique is in general equ ialent to a
methodl dexcloped carlier I, Gahcrki- (191",) tr" the solution ,of ( ertain types ot
intcgra! equtations.
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(The formal differentiation under the integral is not b;viousl% legitimatt, since the

resulting int-gral is apparently di ergent. This difficulty, ho.ever, can be c er-

come by proper treatment of the ensuing ifrms, and a slightl. more complicated btt

equivalent formulation %ou.1 obviate it completel.) The Sch-,inger technique is to

define next the quantity

a 2 G (r, r9 ir')adal
1= -e  d - 2 (3.43)

0 () -- e da

and it can be shown that the potential 0(r) is then the solution of the variational

problem 6 J L-j = 0. It also follois that the total backscattering cross section is

given by the formula

SI j(3.44)

where J is the stationary .alue of J[j]. It might be noted here that the usual

procedure with this mechanism is to assume a simple trial function for the surfacc

potential O(r), for %hich the integrals are more or less manageable. Since the

error in the result is proportional to the square of that in the trial function, the

calculated function should be more ac-urate than the original one, and the process

can be iterated if necessary. In certain cases of separable geometries, ho. e~er,

the iterative scheme can be replaced b3 an expansion proc,:ss. Specificall%, if the

urduio,n function P(r) is expanded in terms of an appropriate ,vt .1 anglt functit,,,

Ii



p THE UNIVERSITY OF MICHIGAN

j . ithn evefficients %hich, in a symmetrical problem, are functions only of the radialIvariable, application of the stationary condition to jLP- -ld atoc n mt

system of equations for these coeffit-lents, %%hose solution, if it exists, gives an

Sexact ;iepresentation of the unknown function 0(r). As a matter of fact, if the basis

functi.axs usea are the standard orthogonal eigenfunctions of the problem in question

and if the Green's function is simiiarly expanded, then the integrals are all tractable

the infinitu s~stem is diagonal, and the solu~ion immediately reduces to the standard

%%.e function solution discussed previously.

In the work of Sleator, ho%%ever, the spherD.dal functions, which are the

natural basis for the te-xpafis.ons, are by-passed in an effort to siniplify the numerical

treatment, and the potential is expand'ed directi; -n Legendre functions,

Substitution into (3. 43) and application of the stationary condition

Uj for all p

yields the infinite system

A C 4 7rB L" = 0, 1, 2--3.6

LI~ L f Gf' (m, r') P h) (ja dal (3. 47)
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B -- ,P-(kz

BP(77)e da. (3.48)V '-'L on
S

If a Fourier integral representatic is used for the Green's fuaiction in (3. 47),

then by rearranging the 7-fold integral that results, it is possible to carr, out all

but one of the integrations in closed form. The last integration, ho'kexer, is

apparently best handled by numerical or graphical techniques. The system (3. 46)

can be proved convergent and can therefore be solved in truncated form to any order

desired. The integral in (3.48) is immediately obtainable from kno',%n forms.

It is thus possible to obtain an exact solution to the spheroidal ,cattermg

problem without resorting to the spheroidal vaxe function, but the amount of labor

involved in evaluating the integrals (3. 47) and solvin the system (3. 46) ',nake it

questionable whether this method is preferable to the one pfeviously des( ribed. At

any rate, the number of term: required n the series (.45) increases ith the frc-

quency in the same manner as in the k'a~e-function solution, and the quantitx of

labor involved rises much more rapidly, so that for practical purposes the Xari-

atior.al solution is perhaps justly classified as a loo -frequency approximation.

An analog us formulation of the vector problem is much more: comnplicat( d

and leads to integrals %\hich appear prohibitively difficult to evaluate.

3. t. 2 II gh Frequency Approximatiois

As indicatcd in the prc ious SU t ioln, th, (,e xt l ,n ,'t lo\ -llreqpuncx ,qpr)\ -

Ii' t)iln. ,alnd teclilh iiluc toi I i t, rmIe,, ii- Is 'h,' tbt 1,)(]N\ wcc',nhnii ( \C u ,I
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even approach the vavelength of the incident radiation is fraught with difficultie'-, of

several kinds, principal of %khich are the inordinate amount of labor required in de-

riving the succtssive terms in the field expansions and the limited range ei con-

vergence of the results. One night hope for better luck at the other end of the spec-

trum, and indeed the situation does turn out to be more favorable there. Various

methods based on optical lavs have been developed in considerable g,'nerality, and

%khen applied to the spheroid problem some of these produce reasonably good

approximations Mhich, under certain circumstances at least, extfend x ell into the

resonance region. These circumstances usually involve limitations on so.ne other

~parame'er, however, so that it cannot be said that the problemi is completely solved.I

Before going into these combined restrictions, ve xill mention briefly the limiting

forms of the exact solution %hen the frequency increases indfiniteiy. In the

interest 6f simplicity, wi consider first only bodies which irc perfect conductors.

The modifications of the theory required to cover dielectric bodies will be

developed later.

3. 1. 2. I Geometric and Physical Optics

The ultimate forte of any sc'!tterung phwrzuinciisit b li avciength d-

creases (which form -'1n1, of eoursC be terme(l tht, first approximation for small but

finite wave length) is coimplte lN dcscribablh in terins Alth( law,, ol geometric ,pltics.

In this in it the scatt r(( fiel!(I ani .smo h cM xc \ ',,nduct iig bl d3 i., (cte, r a in d
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at any exterior point entirely by the curvature of the body at the apecular p-int, i.e.

that point on the surface where an incident ray and a reflected ray through the obser-

vation point are coplanar with the sarftce normal and make equal angles 'ith it. It

is not hard to show that if R and R2 are the prin -. al radii of curvature at this

point, then the scattering cross sectioi a is given by the expression

a =-rR I R2.

At the tip of a prolate spheroid, the principal radii are of course equal and have the

value b2 /a, so that for nose-on backscattering we can write

c = 7r ba2
g.o

and this is customarily used as a normalization factor for -alues of cx obtained

otherwise. These results are also derivable in terms of a limit for varishing waxe-

length of a more general, frequency dependent result (se,, for example, Siegel et al

1955), which is considered belong. Also it is shown by Crispin et al (195S) that in

this limit for sufficiently smooth bodies, the geometric optic, cross section w ith

transmitkr and receiver separated by an angle ji is equal to that obserxed if both

are located on the bisector of this angle. In the former reference an express1r-1 S

derived for the geome t rlc optics cross section as a function of the separatior angle

J3 with transmitter located in the axis of symmetry. -'r the range 7ir this is

(ii) 47 b a2 ra2( -co, ,)+b2(l -cos ")] (3. .4i)
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By the above theorem, this exprez,:ion also gives he monostatic cross section if

transmitter and receiver are both located at an angle 3/2 with respect to the major

axis of the spheroid.

The question cf the accuracy of these results and the lower limit of the

frequency range in which they can reasonably be applied is not easily answered.

Undoubtedly this depends on the eccentricity of the body and also on the dicttions cf

incidence and observation. Some indication of this is furnished by the fact that the

geometric optics result for nose-on backscattering from a paraboloid, Nhich Ls one

Inmiting form of a spheroid as the eccentricity approaches unity, is indeed exact.

The scarcity of data, either theoretical or experimental, at high frequencies makes

it difficult to establish in general where the optical ia~s become dominant. Recent

work on the scalar probiem for a spheroid of axis ratio 10: 1 (Goodrich and

Kazarmoff ,1962 ) indicates that there are resonance Phenomena occurring even in

the range ka -=10i for this body, and it is clear that in general the geometric optics

result is uf limited value in most practical problems. The underlying principles,

however, form the basis of a more refined geometric approach which will be dis-

cussed presentl and zo,:h has pruved both ph3 sicall. illuminating -nd practicall3

useful.

Before dealing with the lalter, we will consider a somewhat simpler but

still s(mnetimes usefull approach based on IILIge.' S prmicip, (otherwise known as

Kirchholl thco r5 *) Tlhis s the i1ll-Vn ,I ph sical optics solution, Mhich is

I ______________________-
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discussed at lcngth for the sphere problem in the first report of this series. The

qualitative aspects of the spheroid solution are generally imilar to those of the

sphere though the specific forms are of course more complicated and, to the best j
of our knowledge, have not been ,wurked out in as great detail. Accordingly we here

content ourselves with a rather brief formulation and listing of the availabh,. resultb.

The essentials cf the KL'chhoff theory can be embodied in the formula

S 1 ( H)A 7R \ ds (3.50)

S

where H s the total magnetic field on the surface, (here the tangential component

may bL used since the normal component is eliminated by the vector product, )

n is the unit normal out of S, and R is, as usual, the distance from a point on the

surface to the field point. The integration covers the surface, arid if the true value

of H is emplo3 ed, the expression is exact. The physical optics appr-_,Xmation,

however, which represents the principal utility of the form. is based on the sub-

stitution of an approximate value of H, specificall, the xalue given oy the geometric

theor3 for a locall plane surface, hich is twice thc tangential component of the

incident magnetic field in the illu.' inat. d region and zero in the shadow region.

Exen with this approximation, the evaluation of the integration (3. 50) is not trivial

in gen ral, since except in the case uf symmetrical incidence, the shado;% curve,

kih ch botirds the i'cgi,,in o tntegration, ,lx -l\. cs both angular coordinate .,, and thc
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quantity R is itself a complcated e.xpression. If we consider only the far-field

scattering cross section, however, some simplification is possible, and if the

incident field is required to be a plane wave propagating along the axis of

symmetry, a simple result is easily obtained for the backscattering cross section.

Consider irst the case where the transmitter is located in the axis of

symmctry, which we taK, ) be the z-axis, emitting a plane wave of unit amplitude

with magnetic vector

i -iki • r
H = I e z -- (3.51)

and the receiver is at a large distanr- fii,, the scatterer, separated from the z-

axis by an angle 0. If r = r , is the position vector of the observation point and r'

that of the integration point, then the gradient in (3. 50) can be approximated by the

form

eiK ek -ikr. r'
"~~~~ ~ -- --..e_ -ikr)e

R r

and using this aid the approximation specified above for the field H on the surface,

we can write the scattered field, afte.r some rearrangement, as

2i e ikr .(5

LP...- 2 r . f)+ f (0'x . - (3.52)

with
C A A

^= - ds (3.53)
St
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S' being the iluminated region of the surface. For the case of backscattering, i.e.

A

r 1 , the second term in the bracket in (3. 52) disappears and the far field

ikr
ampliude, which is the coefficient of -i x in (3.52), can be written

x r

F(O) n e 2tkzI ds (3.54)

St

wnere n is the z component of the outward normal and z' is the z coordinate of

the integration point.

When the above formulas are applied to the prolate spheroid, the resulting

expression for the nose-on backscattering cross section is easily found to be

7rb4 sin nka 2 ]

a ka + si ka (3.55)

The function in brackets is plotted for a 10: 1 spheroid, over a limited range of ka in

Fig. 24, along with various other solutiors. The expected discrepancies in the re

gions of large wavelength are apparent at once. For larger ka, the oscillation

about the geomictric optics value seems reasonable, but a close comparison of the

analogous form lor the sphere %ith tLe e.act (wave-function) solution (be Crispin

et al, 1959) indicates that there is little correlation in either phase or amplitude, at

least until the oscillations in both solution,, become xery small. Also the above-

noted results of Goodrich and Kazarmoif ,n reusonance phenom,'na indicate that thiL,

may occur on15, at extrc, large %alues ot ka, at luast tur thin spherotds. It is
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thus difficult to say in general what or where are the advantages of the physical optic"-

result over that of geometrical optics.

For more general angles of incidence and observation the integral in (3. 50)

is not so tractable and fewk results are available. Application of the stationary phase

principle yields only the geomet- ic optics form (3. 49) (see Siegel et al, 1 55). For

any given direction of incidence, however, there is one observation direction in

which the integral can be eva'uated exactly. This is the direction for which the nor-

mal to the plane of the shadow curve bisects the angle between Lransmitter and

receiver, this occurs when

tan a2 -b 2  sin_3 cos

t 22 p 2

where ! is the angular separation between transmitter and receiver, !3 is the

angle between the axis of symmetry of the spheroid and the plane of the shadow

curve, and

P 2 =a 2 cos 2 3 + b 2 sin? f3

LettLng M -- k p cos one obtains the cross section in the form
24)

ir a b F sh 2 M (3.56

P L M

Here again it is difficult to judge the accuracy of this Iorm in general on the basis

of any available information.
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There are two principal sources of error in the general physical optics

procedure, one being the approximate evaluation of the integrals and th2 other the

dierepancy between the assumed values of the field on the body and the true values.

The former is essentially a computational problem, with which we will rot concern

ourselves at present. Rather we will consider certain modifications or refinements

of the assumptions on the surface fields and the resulting corrections to the geomet-

ric or physical optics scattering coefficients. One such refinement is due to Jones

(1957). In this article only the total scattering coefficient (total energy flux in the

scattered wave divided by the energy flux in the incident wave striking the obstacle)

is considered, and it is observed that in this regard, and in the optics region, the

different regions of the surface contribute independently. The main %,akncss of the

physical optics assumption on the z-,rface current ib in the region of the penumbra,

i.e. the neighborhood of the shadow curve, where it is assumed to be discoti,,ous,

in violation of the actual boumdary condition. Jones accordingl', assumes a different

distribution in the penumbra region and determineb it!, effect on the total scatturil,6

coefficient. For a smooth convex body the field in the penumbra is taken to be locaily

that of a cylinder whose generator is tangent to the zhadov. curse and whuse radius of

curvature is that of the given bodN in a plane normal to thio tangent. The total con -

tribution of the penumbra region to the bcattering coefficient is then formed bx in-

tegrating along the entire shadow curve.
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Consider first the scalar problem and assume a plane incident wave with

unit energy prr ,init area normal to its propagation direction. Then the total scatter-

ing coeffinent arising from the illuminated region proper has the value 2, and if a

cylinder of :adius R is oriented so that its axis makes an angle F -2 with th,

incident direction, it can be shown by means of the exact solution that the energy

scattered per unit lengtn by the penumbra region is

b(n Cos i3, 1 /3

b 2 l/
0 K

where b is a coefficient which incorporates the effect uf the boundary condition,o

and whose values for the usual cases are given in the tabl, of results hereafter.

Apply ing thi.s local analysis to a three -dimensional (convx) body, with the stipulation

that the quantity, kR cos 2, must alvw',ys be large, it follows that if D is the shadow

curve, with differential arc length ds, and S the projected area of the body on0

a plane nurmal to the incident direction, then the total scattering coefficient is given

by the formula

CT 2+ b 01/3 Cos 1/ 3 s (3,57)
T 

k
0D D

v%,hich, for a prolate spheroid with nose-on incidence, reduce:, immediately to

'3 2+21) k)(3.58)
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For broadside incidecr, e the integral is slightly more complicatL d, due to the

variation of R, and vielao a hypergeometric function, so t.at

2b (2
(kb)2/3 2F 3 2 a2 (3.59)

The treatment of the electromagnetic problem for a conducting body is

somewhat more complicated. The contribution of the penumbra region of -a c!-lnder

must first be ascertiined, making use of the proposition that if the incident plane

wave is independent of the axial coordinate, then the total field can be dec 3mposed

into two parts, for one of which the electric v-ctor is parallel to the axis and satis-

fies a Dirichlet boundary condition, and for the other the magnetic vector is in this

directon and satisfies a Neumann condition. These componrnt (. an accordingly be

derived from the solutions of the standard scalar problems, as indicated in Kleinman

and Senior (1963). in the pre sent case if we write the scattering coefficient for the

scalar Dirichlet problem with incident direction normal to the cylinder axis as

(R-2/3
D D 2+b (kRD D

and that for the Neumann problem as

N = 2+b N(kR)-
3

(i. e. let bD and bN be the specfic values of the coefficient b referred to above)

S Nto o
then it develops that the contribution of the penumbra region on one sik in the
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electromagnetic case, %t ith in :ident direction making an angle - -3 vt ah the cyiinder

axis and electric vector an angle ., is

1/R cos (b3e co 2

nd accordingly the total electromagnetic scattering coefficient for a three-

dimensional object, %%ith the angles no%% referred to the tangent to the ,.>adow curve

in place of the cylinder axis, becomes

GT = 2 -b N(bD-VN)se /coS 2  (R/cos ds. (3.60)

D

For any solid of revolution with symmetric ncidence and radius b of

the shadow boundary this redues at once to

R t b N)

--- 2/3 b (3.61)T k21  b

which is the average of the coefficients for the two scalar problems, and for the

prolate spheroid, since R=a 2 /b, it becomes

2/3
T= 2+(bbD+bN,) (-) (3.62)

The two coefficients for broadside incidence (i.e. electric vectur parallel or per-

pendicular tc axis of symmetr) are expressible in terms ol hypergeometric func-

tions, as in the scalar case, and the explicit forms are tabulatcd later.

_ _ _ _ _ _ _ _ _ _ _ _r__ _ _
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3. 1.2.2 Miodified Geometr-ical Theor

The simplicity of the above development is of course dtie in a large part to

the faict that A is concerned on1N vith the total scattering coefficient. The problem of

refining the optical techniques to give significant impro,%ements in tine differential

scattering oir radiation pattern results is considerably more complicated. Perhaps

the most notable contributions in this direction are the theories developed b3 Fock

(1946) (see also Goodrich, 1959) and Keller (cf. Levy and Keller, 1959). Both of

these become raftr involved for three-dimensional problems and depend more on

physical arguments than on mathematical techniques. Both lead directly to the so-

called creeping waxe theory, xNhich is also supported by the more mathematical de-

rivation based on asymptotic expansions and the Watson transform to be dibcussed

later, and all of these, at least in regions where they are applicable, produce

essentially identical results, certain of '"hich are presei. ed in the appropriate sec-

tion belok,. It is beyond the scope of the prcsent effi)rt to give the detailed deri~a-

tions of these results, but kc present hete a brief' account of the principal -trgulments

and assumptions on which they are based. WVe x% ill concern ourseies prinmaril.N %ith

Keller's formulation since this ha.. been %%orked out more_ explicitl and compre-

hensix el3 than the others and thus appears to hai e a w% ide r range of apiplicab;! it . Th

theori has been developed in general terms.- tor both % ector and scalar probh( ins in--

~ 1 . ing s mioth cuns cx bodies- () miore or less a rbit ra i' shape and miate rialIpoe

tisarld thle part,-ilar iesalts 10ol the Scalar sjpht i'wd pr91e ,,, 11h s imti Al
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e.\citation and either Dirichlet or Neumann boundar 3 condition have been given by

Levy and Keller (1959), who aiso give the nose-on backscattered electric field, which

in the optical limit is easily oLinable in terms of the scalar results. In addition,

the case of a dielectric spheroid has beth treatc .J ith similar methods by Thomas

(1962).

The principal restriction in the theory in question, aside from the require-

ment of sufficiently small wavelength, is that the media involved should be individ-

ually homogeneous and isotropic, so that thf radiant energ travels in straight line3

normal to the Nkave front, except on the boundaries of the media, where it follows

the geodesics in accordance with Fermat's principle. At each point of such a tra-

jector, or ray, the field has a well defined (vector or scalar) amplitude and phase.

The latter is assumed to x arv continuously and uniformly ith the distance along the

ray except at a focal point, where it suffers a drop of 7r/2. The amplitude is de-

termined by the source of the ray and uy the energy co ervation law as applied to

the xarmou, pnenomena which it may encounter. For a vectoi field, the direction of

the amplitude must Le normal to the ray, and it is assumed to remain constant ex-

cept at a boundary, khere it is governed by the usual laws of reflection and trans-

mission. t any point in space, the total field is the sum of the fields on all rays

passing through the point. These, can be classified in one of four categories accord-

ing to %hat be.'allS thcm betAeen source point and field point: incident, II no inter-

ruption OC'curs; reflected, it an opt cal refletOIn occurs; retracted, it die ray
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assrs through more than one distinct mediun.; diffracted, if it follo\%s a boundary

fo, a finite distance. For a convex scatterer ,here is no oxerlapping of these

categories unless the body is penetrable, in which case a refracted ray maN also be

reflected internally. The laws governing the behavior of the first three kinds of rays

are familiar enough, but the fourth requires further comment. A diffracted ray is

roduced wherever an incident ray is tangent to a boundary surface. From s ich a

oint the ray follows a geodesic, at each point of which it splits and originates a nee,

ray which leaves the surface tangentially at that point. Thus a diffracted ray from

tLe source to a given field point consists in general of t\ o straight line segments

angent to the obstacle plus a geodesic arc connecting the points of tangency and

-angent to both lines.

The number of rays connecting a simple source with a given field point is in

general finite and for simple configurations quite small, but there are exceptionai

regions, lines or surfaces, called caustics, which are envelopes or accumulation re-

gions of families of rays from the source (they may altei natively be defined as the

loci of centers of curvature of the wave fronts). For field points in the neighborhood

f one of these, the sum referred to above apparentlx becomes infinitc, and the

theory must be modified in a manner to be noted belong. The diffracting burface is

itself a caustic, ond in rotationally symmetric problems, thc axis of symmetr3 is

Iso one. For reflected rays the caustics are more, complicated.
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On the basis of the above, expressions are derived fairly easily for the field

at a given point m terms of that at some preceding point on a ray connecting it to the

source. In corsideration of the fact that the energy flux through every cross section

o0 a tub. of rays is constant, it develops that if the amplitude and phase of the field

at a point P are A0 , 00, then the field at the point P, a distance s further along

the ray can be written

I

u(P) = A P1 2 2e ik( (3.63)
p + s)(P2 + s

where p1, P2 are the principal radii of curvature of the wave front at P 00

(As noted above, if P and P lie on opposite sides of a caustic, there is an addi-0
. 7r

tional factor of c1 2.) If P lies on a reflected ray, the point of reflection is

taken as the reference point P arid it is assumed that the field there is proportion-
0

al to the incident field, th2 proportionality factor being the reflection coefficient,

which is determined by the surface characteristics at the point. (If the field u is

a vector field, then A is a vector and the reflection coefficient is a matrix.) At

any field point P, then, the incident and reflected fields witl have the general form

(3. 63), and the sum of these is referred to as the geometric field ug

The determination ;)f the diffracted field is somewhat more difficult. The

reterrice point tor a surface ray is the point of tangenc) of the incident ray which
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generates it, and here we assume that the field is proportional to the incident field,

i.e. since th.. phase varies continuously the diffracted amplitude is written

A (P ) = D(P )A.(P ) (3.64)

with A. the incident amplitude and D the diffraction coefficient, which is yet to be

determined. Also, in accordance with the above assumptions, at each point on a

surface ray, energy is being radiated into space at a rate which is assumed pro-

portiornal to the square of the amplitude at the point times the elementary area, ,vith

proportionality factor a . This yields a differential equation in the amplitude as a

ftnction of distance s along the surface ray, vhose solution is found immediately to

be

.d 1 A d expr- a(s) ds (3.65)

0j

Here do is the width of an elementary strip containing the ray at the Lmtlal point

s = 0 and do its width at s 1 , and the derivative notation signifies the limit of the

ratio as the quantities approach zero. The decay coefficient a(s) must also be de-

termined independently. The form (3.65) can be combined ',ith (:3.6?) and (3.64)

to give the field at any point on the burface ra. in terms of that at a point Q on thc

incident ray (see Fig. 2) and the resuit can be applied to the point P where a

tangential ray through the field point P leaves t,,e surface.
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P s1 P1 A difficuLty arises kn applying

2(3.63) to find the field at P

in terms of that of P1 , since the

latter is on a caustic and one of

the radii of curvature of the wave

FIG. 2 frcn', say p2 , vanishes there.

This necessitates the assumptioi

that the amplitude A becomes0

infinite in such a way that the

product A op 1/2 is proportional to the amplitude at P computed from the pre-

vious formulas. The reciprocity principle dictatez that the proportionality factor is

the same function of the phN , ical parameters as the diffraction coefficient D

appearing in (3. 64). The c,,mplete expression for the field at P in terms of that

at P i s finally writteno

(P)=(P) (P)+ s s 2I

ud 0 0 1 ) d (PO,) s2(pP1+ 'Y

Si

- a(s) dsj (3.66)

A further modificatlon must bc nad, i n:. 66) ior surfaces on which the f Jd

is i'V(tuirt to anlh. In this , asC, incc the su ,racc is a c,iistic, there must exi"st



--, THE UNIVERSITY OF MICHIGAN -

3648-6-T

a sort of boundary layei in the neighborhood of the surface, in which the field is

much stronger than in the more distant regions, and which will in general consist of

a number of different modes, each with its own amplitude and diffraction and decay

S I -I

coefficients, so that the product D(P°)D(P 1 ) exp L 3 a(s) dj will be replaced

by a sum of such products, and the amplitudes appearing will be those at some point

sligntly separated from the surface.

Since the diffraction and decay coefficients depend primarily on the local

geometry of the surface, their essential characteristics should be determinable from

the solutions of certain canonical problems, and the values so obtained should hold

for a reasonably large class of scatterers. The method used to determine these

coefficients in the canonical cases (the circular cylinder and the sphere are

sufficiently representative for most purposes) is to expand the exact (wave function)

solutions in asymptotic series for small wavelength and compare the domin'Mt terms

of these expansions with the forms obtained by means of the above theory, a process

which is too lengthy to be treated in detail here. In all cast.s examined so far theUssential forms of these terms are in perfect agreement, and it is a simple matter

to isolate the diffraction and decay coefficients. For bodies other than the cylinder

and sphere, of course, the problem of determi-tng the exact solution and its

asyr.iptotic form is by no means simple, and the latter objective fcA Liic prolate

spheroid will be discussed presently.

- - 106
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Before we proceed to this, however, there are several considerations in the

geometric theory which require further comment. As remarked above, the ex-

pressions derived so far become infinite, in general, in the neighborhood of the

diffracting body. The modification required to permit their use there can be inferred

from the behavior of the exact solutions of the cylinder and sphere problems. In ob-

taining the asymptotic forms of these for a general field point, the Debye expansion

,s used for the Hankel functions which appear. Fcr a point on or near the surface,

however, the arguments of these functions become approximately equal to the index

of the dominant one, and the Debye expansion is no longer suitable, but should be

replaced by the Hankel expansion, which is valid for this region and remains finite.

Since the diffraction coefficients to be used in the geometrical solutions to general

problems are proportional to these factors, it follows that to make these solutions

hold in the region of the surface, they should be multiplied by the ratio of the two

expansions specified. The correction factor for an axial caustic can be handled in a

similar, but simpler, manner by writing the exact expression for a general wave

function possessi 'g an axial caustic and comparing this with its asymptotic form,

which becomes infinite on the axis. The corrected expression for the surface field

of the hard spheroid is given along with the general field expressions in th( section

on results.

The above theory can, with comparatixe ease, be adapted to vector problems.

Fo, ,, geomets ic field (i.u. incident and reflected rays) the forR s are identical to

107 -
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t.ose for the scalar case except that the amplitudes are no % %ectors and the reflec-

tion coefficients matrices. For surface rays, each field quantity is resolved into

components parallel to the normal and binormal, and these .omponents are assumed

to propagate independently according to the same las a hich gomern a sc,'ar field,

each having its own diffraction and decay coefficients. Those of the normal com-

ponent (which is also normai to the surface) are iaken to be the same as for a

scalar field Ahich satisfies a Neumann boundary condition, and those of the binormal

(which is tangent to the surface) are taken from .he scalar Dirichlet case. For an

axially symmetric problem, i. e. backscattering from. a solid of revolutin with

incident direction along the axis, :his yields a particularly simple expressi .t for the

scattered (vector) field in terms of the tvo scalar bolutionb, namely (for thc electric

field)

s 1

where u D and u N are the scAttered scalar fields of the Dii chlet and Neumann

problems, rspectively. (Cerapare this with the relation (3. 61) fo,- the total

scattering coefficients). The complete rad.ation pattern for the xector -pheroid

hns, to the best of our knowl:dge, not yet been worked out.

Tht details of the gernctrical theor, as it applies to hmogeneous, nun-

abs( rltiv dlc itctric bodic.s a ru discu,,ss, t length in the report of Thonia... (1J;2).

Her( th lttatUl 1 IS, ,'tC d Her( nt , in th it the di'liracted ra\ . art, n, lInger
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sigificant. and instead there are refracted and internally reflected rays to be con-

sioered. Since the reflecting surfaces are no longer all convex the possibility of

multiple reflections exists and the geometry of the wa,,e fronts becomes r-uch more

compi.cated. For certain wave fonts one radius of curvature becomes infinite,

wiLh t- result that expressions of the forn, ('3.63) are no longer applicable, and the

principles of physical optics and stationary phase must be employed instead. A

general discussion of these is given in Silver (1959). The number and variety of

rays which pass through aay given exterior point depend on the relative permittivity

of the body as well as its geometry, and a general discussion of the problem will

,,ot be attempted here. The backscattering echo area of a particular spheroid of

partlcular permittivity has been computed by Thomas and compared with experimen-

+
tal values. One important characteristic of this type of problem is that there is no

I lnger a wcAi deh.ned resonance region, since there are no appreciable surface

w ,aveb, wvhose interference effects are responsible for the large-scale oscillations in

the return from conductuag bodies when the %avelength is comparable to the body

dimension. A. a result the optical approach discussed here gives good results over

a. frequency range extendng down virtually to the Rayleigh region

In the preceding account of the geometrical theory for conducting or rigid

bodies, little emphasis has been placed on restrictions in the shape of the sea terer.

A more careful con.,ideration however reveals at once that since the radii of

curvature t the surtace are mtmately ii :olved in the de'elprwnt and must satisfy

A: at t iin p (,h'ck the nunwerical reult., has nt ,ucceeded to date and the in-
\ ,-t kg ~ti~ , '(),,ll 1 1! 'I'he 'ure i- tht ici(rt, )rnlitte1 h( re hu, thu eXpel'-

in,,- A i i'-ul - ,ir giver, ,k p 2on p
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certain criteria in terms of tihe -,%avelength, any re-striction placed op. the latter im-

plies some limitation on the shape. In the case- of a spheioid, this expresses itself

in terms of the eccentricity or axial ratio. Thus in the Keller solution described

abo-, e the use of diffraction and decay co)effIiint.s obtained from the sphere problem,

%,.here the radius must be large compared to the .%a,.eieagth, %%ill result i_. significant

error unless the local radii of curvature uf the sphoroxd mneet the same requirement

:verywhere, i. e. unless the eccentricity is sufficiently small. This is borne out by

te analytical results to be considered next. In contrast to the situaiion at lov\. fre-

quencies, where the form of the scatteier is of minimal importance, nearly all of

the high-frequency approximations de-%tlopeo here actually inxoixe a comi~ined re-

striction on frequency and eccentricity.

Another such .nethod w'.hich entails a lovker hound on the radius of cur~aturc

at each point on the surfice is that of Fock (1946). WVe limit ourseixes here to a

brief description off this theory, since, as noted aboxe, it Nields results %'.hich are

in genera] equivalent to those p~roduced 1b3 the geoi-etric-.1l theorx, and bincc. thc

particular forms for the spi-eroi(I problem iiaxe apparently not been %oiked out.

Furthermore the immediate answi'_-s prox idte ate limnited to the- surface cur rent .)r

t~eld distribution in thc shado', region, from %hich it is no tri\ m'l task to obtain the-

scattering pattern or cross section.

Ilit basis, ot Foc~k', !Victho(I is the local 1pkO itonl ()I thE. suri'-c in tho

regionl 4)1 the hlol('A I ind.11x b', a a '1m tI () .n*kip rlm (
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cylinder.) If the incident field is a plane harmonic .% ave and the surface is a perfect

conductor (or either perfectly hard or perfectly soft in the scalar case) then the so-

lution is char,,:.cte ri zed in either vector or scalar problems by a scalar wave function

which satisfies a Dirichiet or Neumann boundary condition. Let the incident w'qve

propagate in the z direction and write the field quantity _. which satisfies this

boundary Condition and the scalar wave equation as

-ikz
e U .

Then it is phiysically reasonable that in the vicinity of the shadow curve and for

- -mall enough wavelength, thie quantity U should vary much more rapidly in the

direction nkermal to the surface than in any tangential direction. Application of

these t%%o approximations leads to a parabolic equation in U, whose sciutions are

essentiall Airy integrals, and the field is finally expressed in term of these func-

tions.

AS originally formulated, the theory is essentially txo dim-ensional and

applies only in the .mmediate vicinity (' the shado%% boundary. Hioever, it h'is

been modified and extknded (cf. Goodrich, 19593) to applN Vi three -dimiiisional con-

vex bodies and to cover the entire shado%% region. Trhe modif icat ions entail a factor

which accounts for the inct'easv in energy density of the surface field rlue to the re -

duction in a rea as the rear of the h)ody is approach( d, I. e. the convei g(.nrce ot the

geoidesic paths, and a continuiOus conip4' lwn (it tt. r~ur mal and tangcrtial !Id corni-

p)ofl('t.S )\crP thc siio'* rcg IIPI.
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3. 1. 2.3 Asymptotic Theories

The remainder of this section deals with an analytical approach which in-

volves the work of a number of authors and which leans heax ily on the asymptotic

theory of the solutions of differential equations involving a parameter. Ag.-in a

complete account is impossibl here, but %e will give a general outhn of Lhe ,cheme

as a whole and the various contributions of the principal investigators, and pcesent

the available results for the spheroid problem in their proper context hereafter.

The general apprcach can be characterized as a refinement and extension of the

Watson transform methods wh, h were developed orginally in connection % ith the

sphere problem and which have been described in detail in the first report of this

series. The basis of the original technique %as the obserxation that sine thL terms

in the Mie series are entire functions of the summation index t in a strip about the

real axis, the sum can be reritten as a contour integral in the comple.x L -plane,

whose integrand is the general term of the series with an additional factor to pro ide

poles at the proper points on this axis, such that the residues are the terms of the

original series. This integrand has a second set of poles, hova,¢er, hih- :irc the

zeroes of a Ilankel function app:aring in the denominator, and all of hich lic in tl

first quadrant of the L' -plan.. When the path of integration is deformt d ) as to en-

close these poles !nstead of those on the real axis, th resulting residue series is

found to converge much more rapidly than the original one at iigh frequencies. )rt

mo(liication of the procedure \%as g %en b Sommerield (19 49), , k,, ,,btalled ti

' I *
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analogous result in the scalar sphere problem by subjecting each radial eigenifunction

in te wave-function ser~es to the given boundary condition, thus determining t-he

complex indices directly. A similar procedure was applied to the scalar spheroid

problem by Levy and Keller (1959). In this case the summation inclices remain

integers but the eigenvalues A mn(c) become complex, with distinct sets obtaining

in the soft and hard cases. in both spherical and spheroidal geometries, the

representation thus derived has a logarithmic singulari~y which obtains everywhere

on one half of the polar axis. The asymptotic theory refer.,ed to above is em-

ployed in the evaluation of the terms of the new series in the limit of small wave-

length. The first term of this asymptotic series is precisely the solution given by

the geometric theory in all cases for which the two have been compared, and it is

generally conceded that this will always be true.

The Watson transform method was exploited in the cylinder and sphere

problcms by Deppermann andI Franz (1952, 1954) and Franz (1954). In these articles

it was sho\~ n that thc resulting asymptotic series for the field in the sh:Aed region

Iof the surface eould bt: written in a form such that each term might represent the

amrplitude of a creeping waxve lnarched at the shadokk boundary and tra' ersing the

surface. The series apparently diA rges in the illuminated r gian, 1b1! tis

difficulty is r .,solved 1), spli tt ing 01f J Sel W'A hOSe' sumi "(presents the geomectric

optics contr ibution, laiga ('ofle rgenrt sc rif,' S O icl is again iriti' !pr~ table irn

tel'nis ot creep)ing I- ' 1 urtht. rmoi'oe it ',\ as u tfl thit tht, :111:1l\ ticaI -olutionis

thnus dc 1i\~ Jw.! ' 2,A % t' l f '.11 nt it t, tarn (,I, 1t mum d u hi tl ~ .
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The general method has .)een formnalized by Kazarinoff and Ritt (1939) wkith

the aidof the complex resolvent theory of Simrs (1957) and Phillips(0V-,52). It is sho%%n

that in any scalar problem in which the scatterer is a level sbirface in a coordinate

system in which the wave equation separates, the field distribution on the surface

can be represented by a contour integral, which can then be evaluated in terms of its

residues, aE least in the shadow region, bN means of Langer's as3 mptotic theor-3 of

solutions of differential equations wkith turning points (see Langer, 1935). if the

problem is axially symmetric, the integrand inxolxes only the product of the radial

and angular resolvent Green's functions, each of wkhich has its ow n set of poles. In

the usual type of problem these tkko sets of poles arc: separated b% the contour, wkhich

can in general be closed in such a way as to include either set, at least for a certain

range of the angular coordinate of the obs rxation point. bIclusion of thL. pules- of

the ,)Pgular Green's function produces the Mie series (or its non-spherical analog),

which conv-erges very slowklN at hilgh frequencies. On the other hiand those of the

radial Green's fuinction yield the rapidly cons ergent se-ries, relc rrvtd to abox e. This

is the series derived by Kazarinoff and H1ilt for tht, case uf a rigid, riot-too-thin

prolate spheroid struck l)N a plane scalar' wave, in the ixis ()t Undct\ flki' th(

given restriction on eccentricity ( I + ,E 0), thc as~nN.tot ic thcor'' olf

Langer' is appl ~cablc and the recs iduies are- e\p yesscd in tLIM m i Aii-N integras ()I

reIa t d futin s )f . lh( i'eSitits ar %C~ aIid ( U\(,i- t he e(lt ir't shad( i -rg in ) II tihl ti 1-

face, 'tIld .1sa U I lr4 ge e it (d th( s(. 1,1 s jtr isall Intr'r tdi i I
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of creeping waves and a comparison ith the iesults of the geometric theory of Levy

and Keller. The first two terms of the ,esidup series are in agreement witih this

theory, and the third term exhibits a dependence ozi the radius of curvature at the

tW which indicates that the geometric theory is not accurate if this quantity is too

small. The details of the analysis are, needless to say, rather invoived, and only

the final results are presented in the present work.
Tf the spheroi is Ino and thin i / k - and kb2 ia << 1, the initial

part of the above procedure s still valid. The field distribution on the surface can

still be expressed as a contour integral which is evaluated in terms of the residues

at the poles of the radial Green's function. "Jhe previous as3mptotic developments,

hov-eer, are no longer applicable, and un alternative theory must be used in com-

puting the residues. The solution has been worked c(ut for symmetrical point-

source e.\citation and either standard boundarx condition b3 Goodrich and Kazarinoff

(1963). The abymptotic theory employed was developed bN McKelvey (1959) and

inxolxes Whittaker (ur parabolic cylinder) functions in place ol the Airy lunction of

the previous slution. Th'S ultlmatel yields expressions for the surface distribu-

tion ol the field or its normal deork ati\e in the form ot double scries, with distinct

form,, appl\ ing in the regions of the sha(lo boundamr and the shaded tip for each

I)ouindar, conlit ion (see S-c. 4, 1. 8). E'ich term ia ari% of these series caln be

inttrtpret,d as a %axe Mhos\ phoas is siocukt(.6(I Aith ,t cttain geodeste path length

Q1 th .l l (A tid ,t o s , f lip itu ti' (1( p)c l.,, in , , s ,Int'in .it ,ui icnaln , i" on

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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the shape of the surface and the number of times the %kave has passed through a tip.

The general character of thcse %aves lies somewhere between that of the --eeping

waves exhibited by the fat spheroid or sphere and that of the traveling aves which

are associated with long thin bodies. This appears reasonable enough since with the

specified eccentricity and avelength the spheroid is indeed a long thin body, i.e.

the curvature of the geodesic paths along the sides is relatively small and the tips

are corresportdngly sharp. Accordingly the amplitude decay rate along the sides is

no longer an exponential but instead a slowly varying function of rT, while at each tip

there is either a reflection or tralsmission through the pole, characterized by the

usual phase shift predicted by the geometric theory, and a sharp drop in amplitude

due to radiation. The specific form of the decay rate along thc sides suggests that

the waves are propagating as spherical waveb originting at the tips rather than as

cylindical surface waves. In the transition region betNeen the neighborhoods of

the shadow b-andary and the tip, the formulas become more complicated, and no

complete physical interpretation has been attempted.

3.2 ECCENTRICITY-RESTRICTED APPROXIMvIATIONS

We turn our attention next to certain approximate analtical results which

depend fundamentally on assumptions restricting the shape of the scatterer, i.e.

the eccentricity of the spheroid. We na( dix ide these ub lutlons into t ko rather

(istimct classes. In the firt thc ,uccent ricit\ rstrIcti,)n 1s applied to te forms

obtaimeud via thi, exact ( ia iunction) itoumul at ion ani th t itilt ,ilg i1pliticatn'n
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provides considerable insight into physical phenomena which in &v. c -al i.ss' are

both inherently more complex and masked by the r jacity of the representation. In

the second, the restriction on the shape of the body is used as a point of departure

and thus characterizes the whole solution implicitly. In either case the frequency

may not be completely arbitrary, since any of the basic technques imposes at least

some practical limitation, but in each of these solutions the permissible r nge of

frequencies is much wider than that of the eccentricities.

3.2. 1 Large Eccentricity

The primordial example of a solution in the first class for a highly eccentric

spheroid is the prcviously cited work originated by Abrah,-:m (1898) and extended and

refined by Page and Adams (1938), Ryder (1942) and Page (1944). The method used

haF been described earlier (Section 2.2) and we consider here only certain

qualitative features of the results. In addition to investigating the free oscillations

of the gcneral prolate spheroid, these authors consider the 2ase of a thin conducting

spheroid strack broadside by a "ave \kith electric vector parallel to the major axis.

The incident field is assumed to be either instantane-ously unifoi m or a spheroidal

function of the angular coordinate with arbitrary index. The plane wave is easily

expressed i a series of these functions, aid the uniform field cnn be considered

as a degenerate form, i.e. function of iindex zero.

For the limiting case of the thin rod of length 2F, an incident wave consistingt

of the nth 'harmonic' ahornc produces a ,!l defintd resonance at a frequenc3 such

L_________"-7 _______
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that c - kF 2-n/ 2, for which the induced current in the rod is sinusoidal and much

larger than at neighboring freqjencies. There are n+ 1 nodes, counting those at the

ends, and the current is exactly is phase with the incident field. As tne eccentricity

is decreased, i e. the rod is transformed into an increasingly thick spherc id, the

resonance becomes less well defined. The frequency at which the current is

maximum decreases as the thickness is increased, and the current ie, ds the field

in phase by an increasing amount. The current at rcsonance is sti.l sinusoidal,

but the rate at which it drops off as the frequency drparts from the value at

resonance becomes lower. For a spheroid of given (large) eccentricity at a fre-

quency belo the resonant value, the current still has a sinusoidal character but it

leads tne field in phase by a substantial amount and the loops near the center of the

body are larger than those near the ends. As the frequency is increased above

resonance, the nodes move • ward the center and the current becomes vanishingly

small in an ever-increasing legion about each end, and the current i0gs behind the

field by an increasing phase angle.

The situation is of coursc much more complicated when the incident field

consists of iomething other than a single harmonic, but the general case can be

analyzed by means uf the techniques used in these articlus and the phicnonenological

elements ueacribed should assist in the overall understanding uf tLc problem. Ex-

pressions for the scattered fields under certain toxcitations are given in Set. 4. 1. q.
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,,nother ".pproximate result which is useful for thin spheroids of sufficient

length at c:-rmL aspects is that afforded by traveling wave theory. The deri-.ation

of this is now stan.ard text-book material (e. g. Kraus, 1950) and s;ince it is not

characterized by the precise fcc-m of the body, we will not dweJ on it here. The re-

sulting formula for the cross section as a function of aspect is given by Siegel (1959)

and recorded in the Table. It is difficult to tell exactly how the accuracy of this re-

sult deteriorates as the length of the spheroid (in wavelengths) or its eccentricity is

decreased, but the data given by Siegel (Fig. 26) show good agreement with experi-

mental results in the region where the contribution is largest, which is in general

sorne 18-30 off nose, for a sphero.,d of axis ratio 10:1 and length 4X, and it is

clear from the nature of tc cerivation that the results should be even better for

longer and thinmer bodies.

' 2.2 Smali Ecceutricitv

At the o:posite extreme in the shape parameter range for the prolate

spheroid, the body is of c )u:se "very like a sphere, and the cbvious line of approach

to the determit ation of its s,-attering properties is via a shape perturbalon :pplied

to the classical sphere solution. In this mannier an approximate solution should be

obtainiblewiti.out the uncumbrance of the spheroidal functions or even their natural

coordii,a~es,which is restrictLd in frequency only in the sense that the Mie srfies is,

ahd whose accuracy must improve as the eccentricity be(me. smalier. This type

,;I anal sis has b-e. n carried cut by Mu khiaL, , '56;) for th_ scattering of a phane
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electromagnetic wave by a conducting spheroid % ith ar, ,rary directions of incidence

and polarization. The orresponding forms for the scalar problem of ., :igi 4

spheroid " ith symmetrical incidence are given in an uniublished Radiation Labor-

atory Memo by SI ator and Ullman (1959). The scaiar solution for arbitrary in-

cidence should be easily derivable from the vector forms given by Mushiake, but

the explicit expressions have not been written out.

In any case the first step is to write the expansions of the incident and

scattered fields in series of sphcrical (vector or scalar) wave functions. In the vec-

tOr problem, the spherical vector wave functions of Hansen are emplo3 ed, and the

scattered field expansion has the same general form as in the sphere problem,

though the incident field expansion, since the direction of propagation can no longer

in full generality be restiicted to the z-axis, is more complicated. We can, how-

ever, restrict the propagation vector to the xz-plane, so that its direction is

-iot
specified by a single angle a, and assuming the usual time dependence c , the

expansions of the inc dent and scattered electric fields for the to fundamental

polarizations (E' p.rpCndicular or parallel to the y axis) take the general forms

E m n ', o -,2)'on s N( -,2 (3.68)
- Sm-mnemn mn

C o C o= 1 , ) i ( I , 2 )E A 4 (3. t9)1-________ ____ o

___ _-0
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Here the M and N ;ectors are the standard spherical vector wave functions

described in the first report of this ,eries, the superscripts I and 2 pertaining to

the incident and scattered fields respecively. The coefficients Ai and Bi which de-

fine the incident fields are found by the familiar L.,rocedure of expanding the vector

functions and utilizing the orthc+,onaiity of the ongular functions involved. Deter.-

mination of the scattered field .-oefficients A s, Bs is somewhat harder, though the

scheme is fairly straightforvard. The general surface of revo!,"ion symmetric

about the z-axis can be specified in spherical coordinates by giving the radius r as

a function of 0, and for a general spheroid the relation can be written

1

rf(e)- aFl-v S 2 (3.70)

where, for convenicnce, we have defined the quantit?.

v - (b2 -a 2 )/b 2  (3.71)

with a and b as defined earlier. (It should be noted that for v < 0 the spheroid is

pi'olate, and for v > 0 it is oblate.) The expression (3. 70) must now be inserted

in the two equations which obtain on the conducting surface and which in tnis case

h.,,e the form

1 df

E 0 = E +-rd--E on r=f(O), (3.72)
0 rdO r

being the components ol the total electric fi~ld E=E + E s for either
r" 0] 0 

- - - P

p( larizatioi,, which are obtained b using th explicit forms of the vector wave

.. .... .. . . .. . .. 1 ,I - . . ....
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functions in (3.68) and (3. 69). Neeuless to say, with the radial variable dependent

ont i ,v--ular one, the orthogonality relations which simplify the solution in the

sphere problem are destroyed utterly, and it is no longcr possible to obtain an ex-

plicit expression for each coefficient of the scattered field in terms of the corre-

sponding pair in the incident field expansion. The equations become manageable onl

if all the radial functions are replaced by approximate expressions correct to the

first order in, viz.

r-a(l+Ksin20 ), j (kr)-j (ka)+E2 ka jn'(ka)sin2 0, etc.

2 n n 2 n

and the validity of the subsequent forms is thus limited to cases where IV 12 <<,

which is the characteristic feature of the perturbation technique. The desired s, -

lutions are finally obtained via a process of multiplying the boundary equations by

suitable angular functions, integrating over the interval 0< 0 4r, and combining

the results in such a way as to yield expressions for each A s , Bs containing several
i i

pairs of the A , B . The scattered fields are then given by (3. 68) a,.d (3. 69) in the

.orm of rather complicated double summations. The sphere solution can of course

be split off and the first orde". correction term due to the shape pcrturbation isolated

Fortunately there is a considerable s.:nplification in the results for the special direc-

tions of incidence and observation. Tlh: essential results are tabulated hereafter,

and certain curves computed for particular cases are also reproduced (see Figs. 21.,

22, 34), A complete discussion of the accuracy and apphcability range has not been
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given, but a comparison with experimental data (Fig. 34) shows reasonably good

agreement for a sphero-d of axis ratio b/a = . 8 over a wide angular range.

The scalar problem is handled by means of the same general technique,

though the analysis is of course considerably simpler, especially ar carried out in

the aforementioned memo under tie restricion of symmetrical inctdence. Here the

incident field is simply

i e-ikr cos6 =Z(-i)n(2n+ 1)jn(kr)Pn(co,6 ) (3.73)

n

and the scattered field has an expansion of the form

s TA h(1)(kr) P (cos 9). (3.74)
n n n

n

If the total field is 0- i + Os, the boundary condition on the rigid surface specified

by r =f(0) is

f2  -f'- =0 (3.75)

ar ao

When the field expansions (3. 73) and (3. 74) and the perturbatioa forms gjven above

are introduced in (3. 75), the angular depeidence can be incorporated entirely in the

arguments of three Legendre polynomials with different indices, and the ortho-

gonality relation ca,, then be used to find a finite and relatixely simple expression

for the general coefficient A . Again the correction term is easily separated fromn

the sphere result, but is in the vector casc the tourmer is mor- difficult to compute

than the tatter.
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It would presumably be possible in both the vector and scalar cases to in-

crease the accuracy of the solution, or extend the range of applicability witil given

accuracy, by retaining all terms in v 2 throughout the derivations. For the case of

general incidence however, and particularly in the vector problem, the amount of

labor involved would be formidable, and even in the simpler cases it would not be

small.

3.3 APPROXIMATIONS FOR WEAK SCATTERERS

There remains to be considered one class of approximate solutions whose de-

rivations are based on assumptions restricting the properties of the media involved.

Technically speaking, of course, the case of a perfect conductor hl, a non-conducting

medium might fall into this class at least as a limiting form, bit this case is at

once so distinctive and so important as to warrant the separate treatment given it.

The problem we now deal with lies at the other extreme in the material parameter

range, i.e. where the propagation constant in the interior of the scatterer differs

very little from that in the surrounding medium, and the phase shift suffered by the

incident wave is thus relatively small. Under these conditions lIL scatterer is

termed weak and can be treated essentially as a perturbation of the medium.

The nata,-al representation of the scattered field in this type of problem is an

integral over the volulne )f the fscatterer which is obtainable via Green's theorem

and whose integrand involves the Green's function and the internal field. This ex-

pression itself is rigorous but since the exact form of the internal field is not

.. - - 124
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known in general, some approximation must be introduced, and this accordingly

characterizes the result. In the most elementary application of the method, the

internal field is taken to be exactly what the inc4ident field would be in the absence of

the scatterer. This yields what is known as the Rayleigh-Gans-Born approximation,

which is of rather limited utility in the type of problem of interest here and which

we will not consider further. Instead we will deal with several refinements which

give considerably improved results over a wider range of the parameters.

3.3. 1. Scalar Case

The first of these was developed by Montroll and Hart (1951) and applied to

the scalar problem of a homogeneous spheroid of material properties not too differ-

ent from the surrounding medium, struck by a plane wave at an arbitrary angle of

incidence. The integral expression for the scattered field is obtained by consider-

ing the entire space as a medium of variable propagation function k(r). The scalar

wave equation is thus

[V2 + (k2r)] =
is

where 0 is the total field, equal to the sum 0 + ,js of incident and scattered fields,

and if the spheroid occupies the volume V, the function k(r) is specified as

k(r) = k at all points outside V0
=k I at all points inside V.

The boundary conditions to be satisfied are

a) continuity of ¢ and its first derivative at the boundary of te spheroid,

- 125 -
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b) boundedness of these quantities at infinity.

Assuming unit amplitude, the incident wave can be written

i ik' -r
'I -e o -

Awhere r is the unit vector in the incident direction. The wave equation can be
0

written

[v2+0 ,s=(k2 - k2 (r))L,
01 0

and if we Zonsider this as ap inhomogeneous eq .ation in the unknown functAon y. , the

solution can be expressed in integral form, using the free spac- Green's function

(2.19), as

Ve IL 4Lk'- -k 2 6(- k )d\

where the integration covers the entire spaice. The bracketed quantity in the

integrand, however, vanishes at all points exterior to the spheroid, so that the ex.-

prission can actually be written

S_ -(k2 -k) (eiIL,, (r')dv',

V

or at large distancc r from the scattercr,

A- -,
,eir __ e Q (') dv'N7__

V

,i .i i i, . . ... . .1 2 f;
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There remains the problcm of ascertaining or appro: imating the field ( r) interior

to the scatterer. Here Montroll and Hart ma!,e the assumption that for a long thin

spheroid the interior field should be approximately equal to that in an infinite

cylinder of diameter tequal to the mi,cr axis of the spheroid ,and materia) properties

the same. The internal field of the cylinder can be determined rigorously under the

assumption of continuity of th2 normal particle velocity at the surface, which L.-

volves the ratio of the densities of .ie two media as another essentially independent

parameter. The solution has the form of an infinite series of cylindrical functions,

however, and in view of the error already introduced by the assumption of thp

cylindrical field for the spheroid problem, the use of the exact expression is hare'

warranted. Instead it is observed that if the coefficients in the cylinder result are

altered in a manner which, in th case where the interior and exterior densitieb and

propagation constants are nearly equal, changes their values very little, the series

can be summed, and when the resulting exponentials are substitutd in the integrand

of (3. 76) the integrations can be carried out in closed form.

The approximate expression thus obtained for hc far-zone field scattered by

a thin, tenuous spheroid (See Sec. 4. 1. 12 p. 170) is not asymptotic to the exact so-

lotion in any one parameter alone, since there are ,lhree essentially independent

approximations inxohcd. As the density and propagation constant of the spheroid's

interior approach thos-, of the SUrrouding medium, thu approximatc solution is

127'.
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asymptotic to the exact, at least in the sense that for both the scattered field

approaches zero. The accuracy of the approximation should improve, in some range

at least, as either of the ratios approaches unity, or as the axial ratio a/b of the

spheroid becomes larger, but the details of these variations are not given. It shculd

be noted that the frequency is not explicitly :nvolved in any of the approximating

assumptions, except as it appears in the definition of the propagation constant. The

validity of the result should thus be relatively insensitive to the frequency, t-ough

some variation is almost certainly present.

Another a'proximate scalar result for weak scatterers has been given b

Greenberg (1960). This is based on the Born series solution for the Schr(dinger

equation under the conditions that the range ot the potential, i.e. dimension of the

scatterer, is large compared to the wavelength and the energy of the potential is

small compared to that of the nciaent field. If, in addition, the scattering angle is

small, then the Born series iL, easily summed and the scattered amplitude is given

in terms of a triple integral involving the potential (see Schiff, 1956). For a square

well complex potential of spheroidal form the integrations iac been carried out bh

Greenberg to yield an ex)ression for the total scattering cross section, v hich is

proportional to the imaginary part of the for- %ard scattcring ,implItudc. The rf suit

is listed in Sec. 4. 1.12.

I I
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2. Vector Case

,ertain vector problems analogous to the scalar cnes considered above are

also capable of formulation in tei ms of an integral equation. If the two media are

assumed to have the same permeability and the dielect. ic constants are E and c0

for the interior and exterior respecively, and if a plane wave with propagation

vector k and constant amplitude vector Ei (perpendicular to ? ) strikes the
00 C1

spheroid, the integr4-} equation for the total electric field E( r) can be written

(suppressing the usual time dependence e - i t )

ik p ikA.r

e E(r) d' - e 00 Ei. ( .77)
4-r E P _ _

V

where p = jr - rt and the integration in the variable r' covers the interior of the

spheroid as before. The essential problem is again the choice or determination

of an approximation to the ,ntrnal field E(r'). Two independent attacks on this

protlem exist in the literature and -,wdl be outlined here. The first was carried out

by Shatilo% (1960). His oas~c assumption is that the amplatude of the internal field

is just that which ould be produced by a uniform external field, while the phase is

that ' the incident field. The expliclt form ol the amplitude is obtained from (3. 77)

by taking the field point r inside V and letting k = 0, i.e. taking only 1he first
0

teirn in the expansiom- of the C\I)oflwl .J,. The amplitude 16 thus
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i 0---E
E. E + VAVA E d-o -- 4r E /

and the entire internal field is

ik? *r

E, =E. e 0 0 - (3.79)
-1 --10

This assumption yields in effect a refinement of the Rayleigh-Gans- Born approx'-

mation m the domain of the material parameters, but it introduces at the same time

a serious restriction on the frequency, so that the applicability of the results is

necessarily limited to the Rayleigh region. For the scattered field in the far zone,

the formula (3.77) yields, after some manipulation, the expression

k2 (E-c) r ik OP

E (r)= o E PA jA Ep.) -  dv' (3.80)

V

with = (r - r')/p. By virtue of (3. 79) and the far-field condition this can bp

further simpiified to the form

k2( ) ik r /I A

E rr(-0 e 0 0 dv' (3.81)
4r E io I

V

(note that in this approximation the propagation constant k inside the spheroid is

the same as k outside. ) The integral can be evaluated explicitly for the

spheroidal scatterer %ith arbitrar directions of incidence and observation.
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If the geometry of the setup is as shown in Fig. 3, where the incident and observa-

tion directions are separated by an arbitrary angle j3, and the symmetry axis of the

spheroid makes an angle a with the bisector of the complement of/3, the plane of the

angle a being unrestricted, the field car be written finally

°/

o3

r0

FIG. 3

(C-E- ikr . r

E S(r) - E " k e • V f(q) (3.82)io 4ir E o "
0

where V is the volume of the spheroid g a/! a2 -b 2

0

and) --3 3(sin q - qcos q)

(Compare this expression f. r ihu scattered field %kith the form given by Sip-gel 1.1959),

p. 72 of this reixrt, baei ,on the d)x?1e approxmiat ion.)

L. 131
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The second attack on the weak-Ecattering prblIem is that of Ikeda (1963),

again based on the integral formulation (3, 77), but employing an Z:xpansion technique

which yields a more general result. Instead of the a prior assumption of the

interior field a.ed by Shatilov, Ikeda assumes an expansion of the electric field at

the general point r in powers of the (small) quantity (E -E)/ E, i.e. a powero

series in terms of E about the value E, which is written

GO n

E (r( E,-E E W (3.83)
Ilk -= 0

Also the exterior propagation constmant k is written in terms of the interior value0

k as

k = k(E /)

and when these expressions ar" substituted in (3. 77) and the coefficients of like

powers of the argument are equated, there results a set of equations A~hich express

each vector E n (r) explicitly in terms of dhe preceding ones and the incident field-n

i
vector E , and the expansion (3. 83) can thus, in p -r.ciple ac least, be carried out to

any degree desired. Since this expression is valid everywhere, it can be used for

the exterior field E. in (3. 80), and the scattered field is thus given explicitl% as a

power series in E 0

This technique is used by Ikeda to determ.ne the cross-polarization elements

of the rcattering matrix to the first-order approximation. The remaining elements

. -132 _
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a, e detexmLied to the zero-order approximation. The latter result, in which the

cross-polar zation elements of the matrix vanish, is comparable to the Rayleigh-

Gans-Born approximation, offering a sUght advantage in that here the true interior

propagation constant k appea -s in the internal field expression instead of the ex-

terior value k . It should be noted that there is no absolute or implicit restriction0

on either eccentricity or frequtncy in-olved in this method, though from the nature

of the forms involved, some of which are tabulated in the next section, it is to be

expected that results of a given accuracy will be more easily obtained at lower fre-

quenc:es.

133
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IV

RESULTS

The foregoing discussion of the analytical solutions of the spheroid problem

has been kept reasonably free of detaild and specific formulas, on the theory that

the number and complexity of the pertinent fdrms would, if included, tend more to

obscure than to elucidate the reasoning involved. In the first part of the following

are tabulated the principal end results of the various analyses, together with refer-

ences to the sources and pertinent sections of th3 preceding text and any available in-

formation on accuracy, range of validity, etc. The second part is a compilation of

quantitative data including the majority of the curves or .oints, both theoretical and

experimental, obtained and -ublished by the principal investigators of the problem to

date.

4. 1 TABULATION OF FORMULAS

1. Exact Scalar Solutions (see Sec. 2.2. 1, pp 25-31, also 6pence and

Granger, 1961).

The specialized forms of the fundamental scalar solutions for source point in

the axis of symmetry are as follows:

Eq. (2.23) becomes

cO

Jk 1 V)R(1)(, )C(, )
G( r 1) S (c 1)S (c, 17)R (3) (C) ( R ( 3 )  g

- l0  N on on on >Lon on
o n. o n

_____________________ 13 _________o o
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Eq. (2.24) becomes

n  ' ,

GN, )=2 S (c, 1) S (c, '0) [R(' C, R)C) (c,
n=0 on

if these are further specialized by putting the observation point in the far zone, they

become respectively

ie~ ikr S c )S ,Cs6R (1) (,F)C R(3) -

r rN on on L on Ni on on (c,
n=0 on

O n i(kr-
2 1  S n+1 )- e2and(G (r, (c, )S (c, os 0 os(kr-r)-C

andG r- N on on 2 onn= on

and in this case eq. (2.25) becomes

ikr (1)n
Go(r,0; 1)"-" : N S on(e, 1)S on(c, cos 0)R(on (c, E

7rn on
In these formulas the quantity C is as given in (2. 23), i.e.

on

(1) (c, 1)

on o an on
on aR (3)(( )+ A 3)

on " an on o

with a, as in (2.22).

In the case o = 0, /3 1 (scattering of sound by a hard spheroid) a number of calcula-

tions of scattered far' field have b'f'n carried out by Spence and Granger (1951)
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*
for plane wave incidence (G ). lTheir results appear in Figs. 4- 8. In additioncO

some nose-on back scattering cross sections have be6n computed by Siegel et al(195q

and Crispin et al (1963). Their results appear in Fig. 9.

2. Axial Dipole Solution (see Sec. 2.2.2, p. 32, also Hatcher and Leitner,

1954).

The asymptotic form of eq. (2.41), which gives the far zone radiation pattern

with the dipole at the tip of the spheroid is

o (-1) n S n (c, cos 0)
H (0 F(2 _1) R(3)

0~2 1 _LI j p N~Y 2- R (c, E)n-- Plnilna\ in

where, as in (2. 41), p is the dipole strergth and p1 n is the normalizing factor of the

radial functions, as defined in (2. 14). Radiation patterns for a dipole on a spheroid

have been calculated by Hatcher and Leitner (1954.1 Their results appear in

Figures 10-12. Belkina (1957) has also calculated some radiation patterns of an

axially symmetric dipole located on the surface of a spheroid. Her results are pre-

sented in Figure 42.

3. General Vector Solution (See Sec, 2. 3, p. 42, also Siegel et al, 1956).

The scattered electric field in the far zone produced by a conducting spheroid

struck by a plane wave propagating parallel to the maior axis is given by eq. (2.55)

Note that the scattering patterns as originally published omitted the units, i.e.
the ordinates plotted are actually values of the quantity f(O, 0)/ a,-ikr jim s s
where f(0, 0) z re . w , i,s sczattered field) and a =semi-major axis.

y W~ 0
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as a function of the angular coordinates n, 0 of the observation point. From this

the radar cross section is easily found to be

2

1,)_4,r .2n on
a 47 2  s in0, 1 Ax S (cT) +

+ Cos 2  i n [A (c, r)-i A'Sl (c, ?
n 0 n. on nSl

n0 )

and for backscattering this reduc3s to

.- n A x S ,-ji 12 A l)n on

The results cf a numerical computation of electromagnetic backscattering cross

section (-!egel et al, 1956) are presented in Figure 24, Section 4. 3. T'he
A z

coefficients Ax , A are found as indicated in the text by solving the linear equa-
In n

tions (2.52), (2.53). If ther- are trmicated after the fourth term, as in the compu-

tations of Siegel et al (1956), the solutions may be written in determinantal form as

follows:
x

The A have the forms
n

B00 D01 D03

B C D D-
i B22 22 21 D23

Ax aE

.u0u12 V12 w13

U +U V W w
30 32 32 313
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B. 0 D D
-±10 12

33 30 32

x aE 01 03 V03 '0 v
A1  H

21 23 V23 W20 22

C B D D
00 00 01 03

0 B 2 2  D21 D23Ax. a E

20 V U+ W
10 U10 12 W11 13

v uW wi30 U30+L32 3K 33

Ci 1  B I0 12

O B3 3  D3 0  D3

H V0 1  U01' U03 W00 W02

V U.+U W
V21 91 22 W20 W22

z
and similar expressions obtain for the A z. The denominators G and H are gien by

the expressions
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co0 0 D01 D03

0 C22 D21 D23

V1 0  V1 2  W 11 W13

V 30 V32 W31 33

CI 0 D0 D2
11 10 D2

C D D12

H-

V V W W0201 03 00 0

V2 1  V2 3  W2 0  W2 2

the elements B , C, W in the above are defined in eqs. (2.54). The
rn rn rn

integrals which appear there can be expressed directly in terms of the spheroidal

coefficients (cf. Sec. 2. 1. 2) as follows using the Kronecker delta, 6,rn and the parity

modulus, p in, which are defined -espectively as

0 for r~n, {OI for r+n odd

rn 1 for r-n n for r+n even.

___. . ...__ ... ....______- 139 .
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OD on2

~fon or d n k= 2k+1 o

+~jIIor 1n
LP ?rk pnj dk dj]

k=O j=k+l

ODSdr~ (k+ 1) on or on dor)J7 on Sor d7 pr(n+1)/j(2k+)(2k+3) d dk+1+ +1kd

rdS OD k(k+1)o K orJn o ~ r(nl) Zj (2k1)(2k-+I)(2ki3) ord ,.

00l~ (k+ 1) I~n or onr]
In or rn > (2k+ 1)(2k+ 3% 1- dk+l k+) zj

-i k=O

T7 dSSdyi =211nOD (k + 1) k+2)dIn or !

nnor FnT 2~l(3 k

in~ ~~ =r~~n or0~~i

+k Idk+ j7z2k+i) dk L(2k-i) dk-2 +

k = 0
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+ (3k +5k+1) +I] C i o
(2k+3) 4 nk j

j=o k=0

Accuracy of the 4-term resalt .ne cn inversely on ka and in a more corn-

picated but not so critical manner on go" At a vdue 9o = 1. 005(a/b = 10) the re-

suit is correct to two significant figures out to ka:Z3.

4. Ra-.leigh Series

a. Scalar Case (See Sec. 3,1.1, 61, e Senior, W96a).

The coefficients u (n) and v () in the series (3.2) au1 (3. 3) for the
n Tn

far-field amplitude of a soft or hard spheroid struck by a plane scalar wave in the

axis of symmetry are given for n = 0 - - - 5 in the following tabie. Except where

otherwise specified, the argument oi all Legendre functions appearing is g. Prime]o

denote derivatives with respect to the argument.

* n
Note that d m

0 for k < 0.141
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TABLE I

Un(17) (Soft Spheroid) vn (n) (Hard Spheroid)I (Po/Qo)Po(::) 0

11 (PO/Qo) 2 P0(n) 0

1 P 0P
_ p + -o pi(l) +

9 Q 2 3 Q1

22

iP o 1P 1 1_P2

o 3 Q1 9Q
0 2j0

3o) P p( 17)+Q)Q ) +_ _ - jP3(7) 0

525 Q 4 7 5 Q1 3

1[4 2+ P0 r)" -- +

__ JJ 2 7() Q+ N8 Q p. , )-3 Q{ T3Q 2 5 1i Q Q 2

1 y Q'

27 Q +Q 7 Q3 75 Q' 2 %t(' ' -' 7

4
142j - + L n

0.. 1P0 1Q I 1429 P 2 )
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TABLE I (Cont.)

n u(I) (Soft Spheroid) v (1) (Hard Spheroid)

1 D 2 PM 2 P12

(T)+q P 63' 2 r ip)+ -- N~
1525( ) 4 /-\Q 3Qo 27 \QI 81

2 \ 2 P 5
177-~~ f)(~ 1 2 p3  4I 1

0 i 0 2

Qo/ 18 Qo 3 Qo 225

4 
12 7 ] oI

- - \ e/ 2025j P

The backscattering cross section of a hard spheroid of axis ratio 10: 1 com-

puted from this series is plotted as a function of ka in Fig. 14. The dependence of

the accuracy on the axis ratio has not been thoroughly analyzed.

b. Vector Case (See Sec. 3.1.1, p. 64, also Justice, 1956)

The incident and scattered fields about the spheroid are assumed to

be representable as power series of the forms shown in (3.15). In the solution for

the conducting spheroid in terms of vector mode functions, the incident field s

assumed to propagate parallel to the z-axis with ciectric vector in the y direction.

The first three coefficients in the incident field expansions are then (in rectangular

coordinates)

,I ____-___________-__-143 .
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= i z2

-o i - i E -22

.i z2

-o = 1 'H = zi y, H = -

and those of the scatterec electric field are

1

E S 1 (2)
o Qe 11

I1:

1 .p2 (2) 1- F2) -2)Y 2 )

1 q 'e 2 1' i - e

1 1'

2 s 2 p 3  (9 ) 1 P 2 . R( 2 ) (2) 3 S(2)]

F 2  2 675 l-e 54 Q- o -e01 2 -e
13 Q 12

1 1Q IP~ 12 p Q (2E2- 1) -2 p P 1 Q0
61 1 2 S200 Q 2

75 2 1 It 1I -
12 PI Q2 QI PI Q2 3Q,

1 
( + )Q 

I 1 '

I I U(2) _V\2) 0 2 1 p2

10 Q1 -e U - e 0 ( 0 7 36 1 T 1 t

1 1 +

m - -e --o0po36pl2 Q

3 Q 2 - )-.6 l

Here, as in (a) i'ove, thL :,rgument of all Legendre functions is g and the primes0

indicate differentiation. Ti .pre iously tmdufined vector functions appearing
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are given by the expressions

R(2) VO(2) (2) (2)
R- 0 0--r Se EEOe

mn mn mn mn

(2) (2) A
e mn

mn

(2)- (2) 2 VP (2) +6 AxP(2'
U e r 0e 2 exe

(2)_
V = A (2) d(2)--e i -x Vy

00 x -e e
00 00

(2)
where the functions 0 are spheroidal harmonics of the forms giv.n in (3.22),0

mn

written specifically

Cosm (7)Qm co
= p( ) mn~

e n n sin
0 mn

Corresponding coefficients for the scattered magnetic field are expressible in

similar fashion. For explici'0 forms, see Justice (1956). (Note nowever an incon-

sistency in definitions of the coefficients_. 2'E H 2H appearing there, viz. the
1., 2' - $

series are written In one place in powers of ('ki azad in another in powers of (ikc),

c being the semi-focal length.)

The coefficients in the near-field series obtained via the potential function

method are also given in the above reference. These arr extremely complicated
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and voluminous, hwever, and we list instead the results for the far field, which art

easily obtained from Stevenson's formulas f, or the general ellipsoid by specializing to

the case of a prolate spheroid (cf. Stevenson 1953, a,b ).

Assume a spheroid of major axis 2a, minor axis 2b, dielectric constant and

permeability E and p, respectively, immersed in a vaccum with major axis in the

-iwt
z axis and struck by a plane wave with harmonic time dependence e , wavelength

A. and propagation, electric, and magnetic vectors specified respectively by the

three sets of direction cosines;° ra, n; 1, iM,, n1 ; 4, m2, n -. Without loss of

generality we can set m = 0. Then the (spherical polar) components of the scattered

far fields are given by the expressions

Ee I (a + I a P) eikR

8 sin 0 a R

I Ksina-ae ao)
E 0P e k

where, to order k4

Pk 2 (K a'+K K k+K3 y)+k4 +L 2 + L 3 3,+

+ M 1 a 2 + Mf 2 +M 3y 2 +N 1 07ry+N2 ya+N a 3

- (K1 a+ K2 0+ K 3 y)(a2 a 2 + b2 o 2 + c 2 Y2)I

and P is obtained from this by making 'he substitutions
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Q1I1 ml, nl-(4 m2 n2
1 2~~n

12, m2 , n2"'-"ml nl

2 2) > 1. 1

E <4 p.

Here a, /3, % are direction cosines of the field point (R, 0, ) and the quantities

K, L, M, N are defined as follows;

2
K 2 (-) f ()/.

1 3 1

K 3 (E -i) f3(E)nl

23 22+b 1

9
K -- E-1) f (E)n3 3' 3 1

15 L imf (0){E - 1)tl[l (5b 2 - a2 )-_(b 2 X2 + a2 11 '1 -c a 2 nin2

4 1
--j -+Eb2 1

2l a2 bf+ f (E) gj.u)n.rn 2 {1~ )Fb2 + L-:2 a2] + E

15 L 2 - 2 ( () ( -)ln,[1 (5b 2 -a2 )-(a 2 n2 +b 2 A2 -+ c(a 2  2.n)}

2= 2 '] 3 n 2 1).t b2

+[f 2 (E 2 nm (E -1) [E-2) I+ E.)2 b  a...a
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2 2 2 (. a2 _52 ,

+ f2 ()g 2 (j)tfIa-I 1 a2 +b 2 )(nf2 (n2)- '2a2-. n b] (a2)(n 4 -.An2 ) 3'

L2 a ab 2
15L -f3 (E){(E-l)n[~ (3 a2 -b2 )4(a2 n2 -b 2 ,f 2 )j - b2 IM)

rf(E_) (E-l)L(E-2)1+ Ea2  a + E2p-

I-v1 4 .( I 1 ab) ab 4(2a2+b 2 ) 1 1  ]

M _(E_1)fl 1 bb ab (2a 2+b nn +

(3E-:) (E_)(I ab -21 nlEbbnn) + 4 2 (2a 2 nn

J.ab (2a +b

Ef 2'g(c Et-a') lk(

= 12 n22 2

.5 N2 i -(p-1)f 2(p)(a2 -b2 )m 2 +g 2 (-) (ia2+b2)(n/t 1 - a 2n[ a 2 - b2  )

+ f2 (p) g2 (E)m 2  ( ab-  - (p-)k2 (E1

15 N3- (E) rn (E-1)b 2

3 '3 IM

Note that in Stevenson's article the expression for N1 specialized to the case ot a
perfectly conducting ellipsoid (Stevenson, 1953b, Sec. 6(3), p. 1148) contains a nu-
merical error consisting of the omission of a factor of 2 in the denominator of the
second term, The same error is carried over in the corresponding expression in
Sec. 6(5), p. 1150.
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U2
where ft(W) f2 (u) 1-1) Ib+]

- -1

f I a213 ( a

2 
1-]

gl~o) g 1o) -' u-I F2+b) a

with - p i, and

k (E) =-k (c) (1 )(b2 I -a 2  E-- (a2 Ib-b 2 1l

2 b b2 b a

A lso I -lo g a-+- - la b 2
-b a- -b

2 a

a b2

a 2(a 2 - b2 )' b 2(a 2 -b 2 )

2a 2 +4b 2 -3ab 2 I

ab 2abU(a 2  -b )
2

4a3 _10 ab2 +3b 4 Ibb 42 2
8 b 4(a - b2)2

and finally

4 E(-) a2 + 2b 2  4E 2

Q _(-l)' iab(2  bb+ lb) ab2- ) +1 (j+ 2 J)2
bb a ab2  b(2a2 +b2) 'a 9b 6(2 a 2+b )
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with 1 4= 2- 5a 1

8ab4(a
2 - b2 )

3

- " [ +6b32(4
2 + 2 )

and 8b2 (a 2 _b 2 ) "a +26ab-3b(4a2-b

The convergence prcperties of the power series representation for th( scalar

case are discussed at length by Senior (1961) (see Fig. 15), but the conclusions

reached there do not necessarily hold for vector problems. Results computed from

the first term of the power series for various polarizazions and incident directions

have been obtained at the Radiation Laboratory (Sleatr, 1959) and appear in Figure

16 . Some idea of the accuracy of the two-term approximation in certain particu-

lar cases can be obtained from Figure 17.

The expansion of the scattered electric field of a conducting spheroid, with

plane wave incident nose-on, considered by Senior for thc low frequency region is

given in eq. (3.37). The coefficientQ A , B nwhich exprese the field in terms of

the vt-tor wave functions M N are expanded in powers of c-'kF in theI.°In. i-en

forms

n+2 Co

A - 7 (-ic)rAn
n b r rn1 r = 0

n+2 0

B = - j - j( , c) r  Bn

n rb r- - r = 0r

1 5 0 .... .
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I~+L 2 2
where bn 2

ni n
Explicit expressions for the coefficients A , B have been worked out for generalr r

n n
nandforr=0, l in the case of A andr = 0 , 1,2 forB

r r

These values are sufficient to give the first two non-vanishing terms in the power

series expansion of the stattered field. Considerable excess information is con-

tained in these forms, in that the index n can take on any value, but without a

arger range of r, no more terms in the field expansion are completely known. The

available expressions are given in the following tables. As in the previous table,

all L-gendre functions have argument Fo

L Expressions for the An

r

r n even n odd

i -1 1l

Q1

1 2n2i 0
9-D +- 6 P2 0

9rn 6" 2, n

2+ )(n+2)
n (2n+3)n2  D-
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IL ExDpressions for the Bn

r

n even n odd

0 0

9[ Dn 6 °2, n 0

+2i (2n i-IXn+2)

r n-(32n+3)n 2  Dn+ Q

2 0 2

8 +1 + +-225 D n-2"°l,n 6 °3, nQ

.(2n+ 1)(n++2)2p 
2

3 (2n+ 3n Dn+ 1

k_5Dn -21,n(q)

He're 6 is the Kronecker delta and5 n21,)( 2

m,2 +31, n n + 9 D'. I
7n (2n+() 2 3'.n- n

DD Z- • •"2

n n(n+ 1) (n+1)
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5. Variatioaa! Forms (See Sec. 3. 1.1 p. 85, also Sleator, 190)

The vzriational coefficients C , B defined in eqs. (3.47), (3.48) are

written more e-- o .-'s.. ;o2l*: aFlr M.(v i + even

: .. . -- :- --- sn d

C4 2 2 3/23__+3v-:-_Po__6

0 0(S2 Cos 2P/2
0 o

where
2- (1 ( P 2 (1)

0o, k, 1 1
os( P Ccoso)--0oP (CosP)+( -Cos Q)P (cos)h + (P)

yr 2 2o~ 2
(gk,i) os"P (OV- cs i j1 (P)+(Rg-Cos OP ( si()

kFZ
and P0 _ being the coordinate of the scattering surface.

0

For Y' < 5, the subscri-' -, -in and A shou.d be interchanged, and for p ' v odd

the integral vanishes. Further,

d j (ka)
B = 4,r F2 t2 _1)i v k - k

V 0 d(ka)

The stationary value J 0f the variational quantity J defined in eq. (3.43) can be0

written

I ~ -1

J = 4r Af B 1

where the quantitie. A are the solution of the linear system (3.46). These bave

been computed for a particular spheroid ,a/b = 10) at a particular frequency
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(ka = 1. 40) for the range p = 0 - 4 inclusive. The values are sho.n in the folio%% ing

table:

; ReA ImA

-I -3

0 6.92536 10 -5.44415-10

1 -1.69158-10 -3  1 15989

2 -5. 82917. 101 9. 76788- 10

-4 -l

31. 31-25-10 -1.70612-10
-2 -5641

4 3. 52.1 11 113 110 2 00564- 10

The resulting potential distriLation over the surface of the hard spheroid struck by a

plane wave nose-on is plotted in Figs. 1 - 18. The normalized backscattering cross
a2  -2

section a = 4 a 2 Jo2 computed for this case has a value 1. 105, as compared to

b 410

the value 1. 091 given by the ordinary wave-function series, (see Fig. 9).

6. Geometric and Physical Optics (See Sec. 3.1.2.1 p. 89)

The geometric optics cross section of a spheroid with transmitter on the

axis of symmetry and receiver separated from this axis by an angle /3 < r is

given in eq. (3.49) and plotted in Fig. 19. By the theorem quoted in this con'ext,

the monostatic cross section is thus also gihen for values of the polar angle 0 = /2.

The physical optics integral is given in (3. 53) but cannot be evaluated exactly

ezcept in certain special cases. Some numerical evaluations of cross section ha~e
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been carried out (Siegel et al, 1955a) and are shown in Fig. 19. The bistatic cross

section at those angLIs where exact evaluation of the physical optics integral is

possible (see p. 95) is given in Fig. 20.

The total scalar scattering coefficient (cf. Jores. 1957) of a prolate spheroid

with plane wave incident nose-on, as obtained via the physical optics approximations,

is given in eq. (3.58) as

b 0 k a 2/3 kb2 /a1

The values of the coefficient b are:
0

Hard spheroid (Neumarin boundary condition): bN= -. 8640

Soft spheroid (Dirichlet boundary condition): b . 9962.
D

For Lroadside incidence, the total scattering coefficient can be written

--- 2+2b (kb) 2/3 C
0

where b Qs as given above and the correction factor C depends on the axis

ratio as illustrated by tle following table of values:

b/a 1. C .8 .6 .4 .2

C 1 .874 .761 .673 .608

For the electromagnetic problem with nose-on incidence, the total cross

section is given by eq. (3. 62), viz.

2f z2 (b b ) a 22/3

D bN))kb
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with bD and bN as above. For broadside incidence there are two distinct results,

on ,- for parnale1 polarization (E1 i a) and the other for perpendicular (EiJ_ a). These

can be written

a,' 2+(bD+bN)(kb)2 13.C

where the correction factors C, Is C ire given for various axis ratios as follows:

b/a 1.0 .9 .8 .6 .4 .2

C11 = 1 2.1 3.09 5.08 6.68 8.11

Ci = 1 -0.21 -1.41 -3.66 -5.47 -6.93

7. Modified Geometrical Theory. (See Sec. 3.1.2.2 p. 10U, also Levy and

Keller, 1959).

The scalar diffracted field at the point P(Q, Ti) produced by a soft prolate

spheroid Eo with point source on the axis of symmetry at the point Q(-I 1) is given

by the expression

ei1-7 t2o 1 /6

"-L..

23/2 6./13 1/6 F71/6 F2 f22 7" )g

2 g2 k F F- -1)
[Ak I I I I2 .+C-(. -2) 1 ) 00d ,)

(17 5 % - T: -
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Here 02  .d q 3 a:e coordinates of the points of tangency P 2 - P of rays through

I11
P, (See Fig. 4 ).The function f nis defined as

V2 - 7 2  -1/4

fo.] - exp ikF
n 2 o 2

+ 0 r,.) P +  )(W--))(1-) + I

to n

5 T)~nk (E2 .n 2)(1 n 2j
71 0

,100) 1 ,01 where j=, 3 and the

0 ambiguous signs are

0 _o_- Q(__ I fixed as follows:

i -Lc jO
0

o ". ) Q o' -

+ if j= 3 and. -7+ E < O.

FIG. 4

Also - -1/3 e i/3 qn() where q(1) is the nth zero of the Airy function

A(t) - cos(z -tz) dz, i. e. A(% )0 for all n, and in the expression above for

, - 1 57. . . - -.. . .



THE UNIVERSITY OF MICHIGAN

3648-6-T

) (i)
ud(P), A'(q ni ) is the derivative of this fnction evaluated at qn . The

corresponding result for the hard sphertid is obtained from the above by replacing
9-12 i/3 (2)

(1) by (2) andL t(q 1)v 3{(2 (q ( 2) where (2 n /q
'r~~ by nF2(j b - 1/3

a (2) is *(2)

adefined by the relation A'(% 0 for all n.

On the surface of the spheroid, w.hich is a caustic of the diffracted rays,

these expressions must be -modified (see p. 107 ). The corrected expression lor the

field on the surface of the hard spheroid, specialized for plane %ka' e incidence, is

(P7r E 0 / exp G n(0, ri)-i exp (T7 -1)+ G 1-!,
dn (1+exp 2 (-(, )) (t

where

K /~f-~---\ 2/3  (31G o, )---i ,F 0 2 drl+ 7,(2) o', " - 'o r

n kn e
a0-

At a poihit on ,.he ax. at large distance z from the scatterer in the direc-

tion of the source (i. e. backscattering direction) the leading tcrm of the series for

the geometrical (reflected) field is

b 2 eik(z -2 -)
U =+ -

g - 2 az

where a and b are, is usual, the major aad minor semi-axes and the positive

si{, holcs fcr the hard spheroid, negative sign for the soft. The leading term of

-.. .. 158 .
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the total backscattered field u ug+ ud is finally

b2  ik(z-2) 2 6 (k )1/3oie
a qz - q. 2 '2o 1/U Fa z q(2) A 2(q 6 13(W l) 2/3

1 0

where the signs are as before, the quantity 6 is defined as

1 for the hard spheroid

(2) A2 (2)6 q1  A (q1 )
) (iq for the soft,

3 [At~q 1

and 1
0 0 1

F 3 +k - 24 1 (k) (9 M - 1)q \ -0
0 o

with j -:1(2) for the soft (hard) case, and T(0)as defined above. Numerical values of

the conortants are given by Levy and Keller as

(1) 3.(372134 2) = 1. 469354

(1), (2),

A'q )) I. 059053 A(q () 1. 16680
1 1

Accuracy of this approximati n has not been determined in general. It has

been shown (cf. Kazarinoff and Ritt,1959) that it is applicable only when the wave-

length is small relative to the radius of curvature at the tip of the spheroid.

159



THE UNIVERSITY OF MICHIGAN

3648-6-T

8. Asymptotic Solutions (see Sec. 3.1.2.3, p. 112)

a. Fat spheroid (cf. Kazarinoff and Ritt, 1959 a)

The scalar field in the sba&lw region on the surface of a bard sphcroid struck

by a plane wave nose-on is given by the series

u( 1 17) T-- R
4 r r

ivrj + iv d*(ri ) -

erin the vicinity of the shadow

+eiv L boundary

where R iv L/4

B +e L in the vicinity of the tip.

Here

-1

r r 1 2 (h r ) [ -17)(1-27] ' )l2

B if itI(1n)-Lj 1/2J B r< d*(,I)-,

B12J. [/2 (2) r) 4lf11

d(n) b -)- (0_

d) -b[ _(r +

1S (17) b S(-t)-dt

Sl 
_ 

) 
_ _r ___dt

,,~~ ... ... ... 609... .. ... _ . .
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I
L = -4b S(O) = circumference of generating ellipse

[E2 -U1).y2]1/2

y = complex propagation const. = - is

1 2 -7 2
g(-1Y 3 3+ e (7+g2) 33ng 4/ 0 2 1 1

r) o ( 2o-)v
o,.,'1 qJ9 2 3 -1 )

h =rth z-aro of 1r/3 (2) 4t1r dt H_

1

2b = minor axis and E = eccentricity -

In the limit of zero eccentricit.,, the result for the field near the tip is

1

r thi sin-(-) hh rin (-k) - 1)w
r E-> 0 H(2) )1-y2)/

a" h H (h)( Co [y (in--r)
r r r

3

These results have significant accuracy only on condition that

be/a >> 1, (cf. Kazarinoff and Rift, 1959 b).

b. Thin spheroid (cf. Goodrich and Kazarinoff, 1963)

For a thin. spheroid kK Rt = k -  '- " 1) at high frequ-"... .... .cios (ka >> 1) with

o a

point source on the axis of symmetr S at the point ({ t) the surface fields in the

-;
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shadow region are given approximately by the fcllow-ing expressions:

Near the tip, where I c(1+ ) <<I1:

For the Dirichiet problem

aug ,17) N wo n e eiE I + 1 ) a [c(+ri K)

2nJ -22 nl -I! 2 L1 1/2 1 rn

n"-O m=O

For the INeumann problem

N w-ic( 1)

u~~ T)=N co in n? e - c CosEc~l + yl)] X (2)

0'o /,,2n+ /l [7n i/2 m

n-0 m=0 2 cLI

Near the shadow boundary, where i v( + >) 1:

For the Dirichlet problem

N O Dic(\ 1
aU( orn),_. m 2(-I) n ~ 1 a z e_____X(1)______

m0 b- Ei-r.2 )(I -2  1/2 1 m "n=O =1

r i.t + r) r& 1/2 n-1 )nitnl )2 rj+ . 1/2 e-it( +

e + -- y7) 2 4n 2n+1 (L' 1-1 r

For the Neumann oroblem
N O (_)n+l -ic(l +1)

.n= m _ X2ulo'r) _7)l2_} 1/2 m *

1 1+v_ "+i/ 2 + (k l n 2 -iC(1+l)(1_1 + 1/21
eic(I + Yl_ + 4nc2n+ I R2 e -+--

L 162_________________I6
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where c =kF

-1

rF cb2 i cb2

1j) -4imF4 i-2m(2n+l) 4m 2mX~j  e il(i R. , j--1,2
m L -

a n ,d0<ka<0 2 n-1
These results should hold when ( 10 (n =2, ..... a

b

9. Uniform Field Result, Thin Spheroid (see Sec, 3.2.1, p. 117, also

Page and Adams,1938).

For a thin conducting spheroid in a time-harmonic, instantaneously uniform

electric field parallel to the major axis and given by the expression

E AE e t
- Z 0

in a medium of pernittivity E, permeability p, the components of the scattered

field at the point (Q,n) in the far zone can be written approximately as

2b.c 4

2 E c I  r) 5*7 ~ a~+ -y1 1
[32_fc3 a1)2+(blml

4nb 4
2 F 1 c3

H 2~ 0 0 1( 3)3 2 54. 7u3 i(cg-Wt+ 2 -2y)HO - e
3 u " i i A 3 a1 )2+(bmI)2] 1/2

_J

in which
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-1

L~o + 1 -1

-Vh 
a

c =kF

and the remaining quantities are written as power series in c which begin as

follows

al 1 2 187 4 26 a 021 6
a,2 C 3 4 2 4 4 6 2

2.5 23. 54. 7 24 . 34 . 5 . 7

b 19 C2 2609 4 32 593 6.=1--c 2 c --
25 23. 5 4.7 24. 34 5 5. 72

1M I_ ___+__488 6

1 5 3  7 3 4  55 " + -

2 4 8 6s =1--c+ c +---

1 4 6
54. 7 3" . 7

u =P I I 1Wc 2 +F 2 - 1 0 1 k
S1 2 3 L32 5 4  32.52 72 5

31 1 (9+ 4 _ 1 10+- 1 c6+31p )+-4 () P() Ic +---

5 3"5 ".13 5.5. 2 11. 13

u 1=P IM+ 6 P2I(Q) - 24 1(j 2 _ 4 p ( ) 54 I)
3 3  5 3 .7 L5 4 7 1 36.5 7.13 5

_ 5 p1( )] c4 +

23. 7. 112. 13 7 _

.... 16i4 . ..
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Accuracy of these ftrms h.---; not been established. They should apply reasonably

well for the cast; of an incident plane wave with electric vector varallel to the major

axis provided the wavelength is large compared to the minor axis.

10. Traveling Wave Formula (see Sec. 3.2.1 p. 119, also Siegel, 1959)

The backscattering cross section of a long, thin, conducting body struck by

a pl?ne electromagnetic wave with propagation vector P making an angle 0 with the

major axis, and eiectric vector in the plane of P and the axis can be written

4

= io 'kL

where f(0)- sinO sI -p Cos 6

and

2 Cin L (1+p- Cin kL (I-p
Q 2 -- Q

pp

+ p-1) coS~ (l+p +(p+1) oL (-p1 i (I +

2p 3 P..P P(SL I
1, kL

Here Si is the sine integral

Cin is the modified cosine integral

' = voltage reflection coefficient

"This formula is in errur in Siegel (1959) and Crispin et al (1959).
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p relative phase velocity

L =-length of body

X =wavelength.

The relati,-' phase velocity p is determined b3 the actual path length along the sur-

face relative to the distance in the axial direction. The voltage reflection coefficient

depends largely on the angle 0 and on the shape of the body at the tips and must be

determined by analogy or experiment. The values used by Siegel for the 10: 1 pro-

late spheroid in three distinct ranges of 0 are as follows

0 = 0-400 40-60 °  60-75)

-Y .33 .7 1.0

The theory breaks down at e = 0 artd in the region about r/2. Comnpaf-is.on with

epqeriment is illustrated for the 10:1 spheroid in Fig. 26, p. 293.

11. Ferturbation of Sphere Solution (see See. 3.2.2, p. 119)

a. Vector Case 'cf. Mushiake 1956)

The aormalized backscattering cross section of a fat spheroid specified in

spherical poiar coordinates by the expression

r G (- vsin2  w)/ith vI a /b', I vk<< 1

and struck by a plane wave whost- propagation direction makes an angle a with the

axis o1 *_n mtrN can be written for 0 polarization (Eill plane if incident direction

Ii a
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a O(a) 2 a0 (a) 2

7 .2  I r a2

where, to first order in v,

..,4 n+"

4.n (-1) (2n+ 1) a (ka)n (ka)+i rv'

with

ka (ka)!

a (ka) tj (ka) - h (ka)I----- "j (k a) h 1

n 2 1) h (ka) J
n

i
6 (ka)=ftv

2Lka h. (ka)j
w c n

;-1 'n mPm (cosa) ;m-m- p mp (cosa)

and ilt 2 o a -

n sin a r nr sin

2m dPm (Cosa dP (cos c) _1 ir
-im 6 I r +in+1 n E r 2m

nrn da m r nr
r m

mP (cos a) m P4m )osa)r I i I m  4 n,

sin a r nr nr d a

The corresponding expression for r7' is obtained from this by making the sub-

stitutionq

: -- : -: : . .. . .- 167 - -- - ... .. .
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I
pm pm

mP m (cos o) dP (cos a)
S > S S=n, r,
si:n do

and the quantities -y are defined by the expressions
r r

i3(a)= ([ a j (k a  F-]  a ,r(ka)' Fka h(1) (kaA '

r 2ka __ ka ah:9(ka']) " ka _J

jkahj (kajj )

The remaining quantities I Sr , s = 1. 2, 4, are ecsentially definite integrals ofnr

products of Legendre functions defined as follows:

7"

in n r + 2 sin3 0 dOI mnd 0 de sin2 0
0

?r

?m=pmnr + ' pm+ r sin2 0 dOj
nr 0 9 \r d

dP

9n = mm

Pm nr P sin 2 0 sin0 dO"nr Jd& r
0

with

ninr = (2-6 I I(2n+1)(n- in)! (2r+l,,r -m)!
o, m n(n+ 1)(n+ m). r(r+ l)(r+ m)'
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wh ere ults cothc Ki' n thse fra la foj-r svle fvi h
O, m

j Results computed from these forimdfas for various values of V in the

neighborhood of unity are shown in Figi, 21, 22. A comparison with experimental

data for a particular spheroid at a partic,.lar wavelength is shown in Fig. 34.

b. Scalar case, Nei..nann problem with symmetric incidence and arbitrary

observation direction (,f. Sleator and Ullr.ai, ibwv).

If the spheroid is specified as in the vector case above and the scattered

field 'i s (r, 0) is expanded in spherical scalar wave functions

S0)
str,9) =_ A h (kr)P (cos0)

n n n

then the coefficLints A can be written
n

rK (ka)
A =i (2n+ 1) n +v an h (kn

Lh~n al

with a 2 n + n- - I

2n -- 1(a3[ h () (ka), h h(1) (ka]) (2.-,l )(2 n +3)

nln-l)[(ka)2 -(n-2)(n+ljl (n+l)(n+2)[(ka2)-n(n.I ]

Fn)(2n-) (2n+3))
2 n- 2(Ka] (2 -1)2 Lhn+ 2 (ka ) 1

The backscattering cross section is given by the expression
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2

n=0

No results have been computed from these formulas as yet. Accuracy should

be comparable to the vector case.

12. Weak Scatterers (see Sec. 3.3, p. 124)

a. Scalar Case

The differential scattering cross section of a thin homogeneous spheroid of

interior propagation constant k, immersed in a medium oi propagation constant k.,

and struck by a plane wave propagating in the panE 0 at incident angle a

with the major axis (:* 0) is written approximately (see Moztroll and Hart, 1951) as

27r(k(- k-2 ) m a 4b 22iak 3
1 0(0 1 * 2 j (--ile i V 2I+m 2[+4+l A 4 7e2 J J$3 1,2J~2v

I +2Acos 4a k 1  2

where
k. - k

1 0
k +k

k. =k2 - k2 cs
1 o

K lk -k 2o cs 2 a

k2 - k2 cos 2 a
1 0

m
k sin a

0

2 2 2  2 k 2 b2  O -O 2

a2 k 2 +a k2 sin2  + k coa -cos )2 _2a 2 kk o sin 6 cos 0
0. 0 o 0
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v = az  + +a2 s i n ' 0 + 0k b 2 (cosa -coso ) +2a k l k o s in o cos e.

No quantitative data are available on accuracy of this result. Qualitative

remarks are made in the preceding text.

An approximate result which derives from the Schrodinger equation, under

the assumptions that a) the energy of the rpotential is small compared to that of the

incident wave, and b) its range is small compared to the wavelength, is given by

Greenberg (1960). If a plane scalar wave strikes a square-well potential of prolate

spheroidal form, represented by the expression

U=-U (1+i 6) inside

U 0 outside

at an angle a with respect to the axis of symmetry, the total scattering cross sec-

tion is given approx'mately by the formula

T = 47rb (a 2 sin2 a + b2 cos 2 a) Ret -+ -b exp(iC

+ I b

where a, b are major, minor semi-axes,

C=ab [a
2 sin 2 a + b2 cos 2 1a] 2

Ub
and b

k =-(1 + i6
k

__. - - . . .17 1 ... .. ..__ _ _ _.. .. ..... ..... ..._ _
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ik'?
i.e. E(r)-E (r) = e -E

A
where E, E are respectively the interior and exterior dielectric constants, i is

0
i

the unit vector in the incident direction, and E is the incideat field amplitude, the

quantities and J.>. vanish, as does J_ if' J, where s is the

unit vector in the observation direction. To this order, the other quantities are

(QJI(K)
1 -(k4 b 02

Jil-->l ('- (k r)2 0
0

where k is the external propagatign constant0

r = distance to observation point from scatterer

a, b are semi-axes of spheroid

K k -ko 0 (b9 sin2 P+a 2 cos 2  1/2

= angle between ki -k . and major axisC,

j. is a spherical Bessel function
1

k is the internal propagation constant.

In the first order approximation, where two terms of the above series are used for

the internal field, the quantities which vainish in the zero-order are given by the

form
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1 W M2 (i2 -1) 4(k b2 a) 4 (X2 +)
a----b (k r)0 am2m -b a- b

0

OD mDl(k s' 1 Jnj (ki')

with X z (2m+3Y,2n+3) m+1 0' n+1
a-b m, n nO ki'

1 21
_ dt 1 j> (kt')n (kt'). d T )T (cos 0)

4z (kt'Y <' OT
-I 0

a b

where P is the parity modulus defined on p. 139.mT, fl

z

it =b i+(a-b)i A

z 
I

Az - unit vector in direction of axis of spheroid

i , s , t - components of vectors '1, , to parallei to z

t = unit vectorjl T

T =vcctor of integration point (dummy variable)

0- -1
Cos t

z

> -i ofor m~> +1n and conversely for p <n+l "or n> m

" (cos 0 ) is a Gegenbauer function
m s

. - - .. 174
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0. = angle between Af and',

=t - ( A - = unit vector I observation plane

0 (9_( - unit vector in observation plane_

II (~~~*)2

4 (A6/\As))
= unit vector in observation planel 1[1-( R"-s)

and finally
27

- 1 d * ~ j 1 (Ko) j,(Kol) (
a--*b 4x z o 0 0 a bj K K.

-l 0 s

where

K' =1k s'- k t
S o-

~i A

z

z

At A
t'y bt +(a-b) t Z

z

Comments on range of validity appear in the text.

... 17 5



THE UNIVERSITY OF MICHIGAN
3648-6 -T

4.2 THEORETICAL CURVES

The following are the graphical representations of the principal numerical

results obtained to date from the analyses described in the preceding chapters.

....... . . ....__ ____ ____ __ _ 176
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90=1.0054-102

10 f 20 30

FIG. 10: RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THE TIlP OF A
PROLATE SPHEROID, ka=l * 0 (Hatcher and Leitner, 1954).
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go=1.04 1o1.7

FIG. 11: RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THY, TIP
OF A PROLATE SPHEROID, ka=2. 0 (Hatcher and Leitner, 1954)
fm 7r 2 al" E,2J1Jlm r H j2
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9 =1000J801 9=1005037 9=iJJ2 9=4J547O0 g=L34:64-1

ka=kb=O' kak~ ka=kb=0 ka=kb=0 ka=kb=0

-ka=0.98 ka=0.99 ka=1.00 ka=1L13 ka=J. 31
kb=0.04 kb=0.1X kbO0.20 kb=0.57 kb:0, 88

c= 1

ka=3,0O =301 ka=31 6 ka=346 -- a=40

c =3

- kb=112' k =L160 4U3 kh=2.68

c5 ka5Dt0 a5y ka= 0 ka=5.77 ka=671

k =Q0 0.5o_~~ kb=4.47

=k7.01 -ka="103 a=7j14 ka=8W ka=9,.39

kb=Q128 kb= 170' x ~=4t041 kbL:66

FIG. 13: RADIATION PATTERN FOR AN AXIAL DIPOL1I- AT THE TIP OF
A PROLATE SPHEROID. (Belkina, fl57) (Broken lines correspond
to sphere of radius r = c,/k.)
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(a) Exact Solution (Siegel et al, 1956)
(b) Power Series, 1 Term (Rayleigh, 1898)
(c) Power Series, 2 Terms (Stevenson, 1953)

(d) Power Series, 3 Terms (corrected, see footnote, p.60)

100

4
10

i (d)

1.0 __ _ _ _ _ _ _ _ - __ _ -

i 0.1

f(

i 0.01

4/

0.001
0.1 0.2 0.4 0.6 0.8 0.1 1.2 1.4

ka

FIG. 14: LOW FREQUENCY NOSE-ON RACK SCATTERED CROSS
SECTION FROM A HARD 10-. PROLATE SPHEROID (Sleator, 1960)
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lNote: Fig. 16 is continued on next page.)
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FIG. 18: POTENTIAL DISTRIBUTION ON THE SURFACE OF A HARD
10:1 PROLATE SPHEROID WITH PLANE WAVE INCIDENT
NOSE-ON. 0 = ekz+ os (Sleator, 1960).
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105 __

10 4 -

a 10
b £- Transmitter on Major .Axis, and a-iy.

103 - Geometric J)ptics10 --- I .. * * Physical Optics (kb= 100) - -

00) a o Physical Optics (kb = 5)
a(0)10. -- /4

- ' t I I ..
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FIG. 19: PHYSICAL OPTICs CROSS SECTION OF A PROLATE SPHEROID
AS A FUNCTION OF SEPARATION ANGLE 3. (Siegel et al, 1955a)
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FIG. 20: BISTATIC CROSS SECTION OF A PROLATE SPHEROID.
EXACT PHYSICAL OPTICS RESULT FOR a/b=10, ka=25.
(Siegel et d, 1955a)
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FIG. 21: NOSE-ON BACK SCATTERING CROSS SECTION OF SPHEROIDS
WITH SMALL ECCENTRICITY
(Mushiake, 1956).
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a =angle between axiis of symmetry and direction of incidence

= angle between plane of a and incident E
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a/hb 3, 1(q) as in Eql. (3. 82) (Shatilov, 1960)l.
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4.3 EXPERIMENTAL RESULTS

In view of the fact that the prolate spheroid has been the object of a considerable

amount of theoretical iuvestigation, it is rather surprising to find that 3pheroids

are not nearly so popular as objects of experimental study. This, in part, is a re-

sult of the difficuly incumbent upon measurements involving low cross section

shapes, in which category the prolate spheroid often falls. It would ;3eem, however,

in view of the considerable interest in the scattering properties of spheroids and the

increased measurement capabilities of various laboratories, that a comprehensive

program of experimental measurements would be well justified at this point if one

has not already been begun.

At the present writing, the list of experimental studies on the prolate spheroid

is short and the available data are quite lim:ed. As an illustration of the scarcity

of these data, Fig. 24 depicts all available back scattering data for that case

where data are most plentiful, i. e., nose-on back scattering from - conducting pro-

late spheroid with major to minor axis ratio of 10: 1. Also included in the figure are

available theoretical results. This assesst .ent of experimental work is based on a

.,tudy of the publisthed literature as well as private ccramiunications which are

enumerated below., Any omissions are inadvertent ant- it would bt greatly appreci-

atid i. such data were communicated to the Radiation Laboratory. All of the work

discussed in this section concerns the electromagnctic (vector) case.

. . .. . . ...... .... ........ . ... .. ... .1 1 9 8 -- - - ,. , -. .



THE UNIVERSITY OF MICHIGAN

3648-6-T

1021 

I

_ _ L / 1 _ _

I ___ ___ ----i* ___!

-~ 
= . - I -/ :i ii,{ _ _ -

L,,__ _I_ _... L I *'*j :
0*II V

10# 

-t--i~ _ __ i- - ti _

10-2_ ____1 
Experi en tal T eo re6tica 1

- Olte nd Siver(1959) - - Rayleigh

- - -
Honda et a (1959) -C--- E xa t

1 Lotsof(,pab.) -"n,--Physieoal Optics

...-.. - - k H a tt e l, l (1 9 0 ) . . . . . . . .G e o m e t r c O p ic s - -

1 0- 
--

0 .* .p 
r ... .. i Theoretica

1.0 ka io

FIG. 24: NOSE-ON ELECT-ROMAGNETIC BACK SCATTERING CROSS SECTION
OF A 10:1 PROLATE S.1 HEROD

09



THE UNIVERSITY OF MICHIGAN

3648-6-T

Back scattering measurements of a 10: 1 perfectly conducting prolate

spheroid were carried out at The Univeisity of California, Berkeley, using the image

plane technmique (Honda, et al, 1959). The operating frequency was 9346 Mc and for

ka = 29. 8, complete polar diagrams of the back scattered field vere obtained in the

plane perpendicular to the incident electric field. The results for back scattered

cross section near broadside are plotted in Fig. 25 . Also included is the theoreti-

cal geometric optics cross section calculated from equation (3. 49). At nose -on

incidence the cross section was measured as about 4 tinies (6 db) larger than that

predicted by geonvtric optics (s6- Fig.24 ). There was some doubt as to the

reliability of the measurements for aspects near nose-on because the extremely

small values of the scattered field admitted the possibility tnat the measured return

was dominated by a spurious signal.

Subsequently an improved version of the same experimental setup wa.. em-

ployed to measure the back scattering cross section of a set of five different con-

ducting prolate spheroids, all having a ratio of major to minor axis of 10: 1 (Olte and

Silver, 1959). Their results for broadside (E perpendicular to axis of symmetry)

and nose-on incidence arr given in the following table. The nose-on values are plot-

ted in Fig. 24 and substantiate the results of Honda et al.

(T IN db RELATIVE TO 6 IN. DIA. SPHERE

a 6.0 3.0 2.111 1.263 1.184
Nose-on -26.0 -48.0 -43.3 -40.6 -40.9
Broadside 2.4 -0.5 -4.3 -12.7 -13.5

2~f~'
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Further corroboration of the nose-on back scattering cross section of a 10:1

prolate spheroid for ka = 29.8 is given by measurements made at the Radiation Lab-

oratory (Hiatt et al, 1960). The experiment was designed to measure the effect on

back and forward scattering of coating various parts of a conducting spheroid with

radar absorbing material. A perfectly conducting spheroid was also measured and

the bask scattering cross section appears in Fig. 24.

J. Lotsof of the Cornell Aeronautical Laboratory also measured the back scat-

tering cross section of a 10:1 perfectly conducting prulate spheroid for vario-is as-

pect angles. These data have not been published directly though they have appeared

in the literature (Crispin et al, 1959; Siegel, 1959), cited as a private communication

The dati were measured at ka = 12.56 for both horizontal and vertical polarization.

The results for herizontal polarization (E parallel to the plane of rotation) are given

in Fig. 26 together with the theoretical result predicted by travelling wave theory

(see Sec. 4.1. 10). The results for vertical polarization (Ei per,.zndicular to the

plane of rotation) are given in Fig. 27. The nose-on values tn both cases bav been

renormalized and plotted in Fig. 24.

Some bistatic measurements were carried out on a 2:1 conducting prolate

spheroid for incidencte along the axis of symmetry by Rabinowitz (1956). Measure-

ments were made at bistatic angles between 900 and 1800 for both horizontai and vr-

tical polarizations (Ei parallel and perpeadicular to the plane of rotation) at a wave-

length such that ka = 103. Quantitative results were not given but t':le qua"ative

scattered field behavior is evident in the results given In Fig. 28.

+ Note tbat the ordinate scales in the graphs of these data in these references are too
high a ctor of 104. Actually what is plotted is a in cm 2, not m 2 .

202
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A meastu-ed values 00< 0 <900 -
o measured values 900< 0 <1800 Lotsof (unpubi.)

travelling wave theory, (Sec. IV, A. 10)

1.0

-I z - l H ,S _"ka =12 56 a/b =10

0 0
a
2

.05---t-'_-

Ac
.01 -- _

.005-

* 001k -- - -

0 10 20 30 40 50 60 70 80 90
0(A) or 1800-0 (0)

FIG. 26: BACK SCATTERING CROSS SECTION OF A 10:1 SPHEROID AS A
FUNCTION OF ANGLE FROM SYMMETRY AXIS
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0
A measured values 0°<& < j
0 measured values 90 :- , < 1800

(Lotsof, unpoblished data)
Hi  ka -=12 56

fp a/b =10

i 0'

koo l 125 I I

A ,, L ol ,° l

00

U i ii A i
x0

2 iioo-I °i I I ...01+
AA 0 A

0 10 20 30 40 50 60 70 80 9(

0(A) or 1800-0(O)

FIG 27: BACK SCATTERING CROSS SECTION OF A 10:1 SPHEROID AS A
FUNCTION OF ANGLE FROM SYMMETRY AXIS
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More extensive bistatic meas,,rements were subsequently carried out at the

Ohio State University experimental facility (Eberle and St. Clair, 1960). For

1 0 0 0
bistatic angles of 0 (back scattering), 30 , bO , 90 , 120 ,and 1400, scattering

cross section was measured continuously as a function of aspect for both horizontal

and vertical polarization of transmitter and receiver. As indicated in Fig. 29 , the

experimental set-up involved fixing transmitter and re :eiver at a particular angular

separaion i, and rotating the target in a plane containing the transmitter

P eCeiver

NI
TZ 2Mi 'mt er

FIG. 29

and receiver directions and the spheroid axis of symmetn,. The system operated at

a wavelength of 3.2 cm and the spheroid (again perfectly conducting) had an axis

ratio of 2. 178 with ka = 9. 13. In Fig. 30, the measured values of a/) in db are

plotted against aspect angle a. No attempt has been made to renormalize the data

since as originally presented, thc scale is too small to oe read with much accuracy.

The experim rtal facility at Ohio State University was ai .o used to measure the

nose-on back scattering cross section of a dielectric spheroid (Thomas, 1962). For

spheroids of axis ratio 1. 35: 1 and relative permittivity 1. 8 (index of refraction 1. 34)

,,,_ _ . 206 __ . .... ...... .....-
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the cross section was measured for various values of ka. A theoretical curve based

on a modified geometric optics analysis was p,-esnted along with these results, buf

there appear to be discrepancies in the numerical work which have not been resolved

at the date of this writing. The curve is therefore omitted here, but the experi-

mental results are given approximately (as read from the published graph) in the

following table, waere b is the semi-minoraxis of the spheroid and the ratio a / irb2

is given in decibels.

b/X - .38 .40 .42 .76 .81 .85 .92 2.02

a/ rb 2 = -6.7 -5.2 -2.7 -2.2 -2.3 -. 04 -2.1 -0,7

More extensive measurements of scattering by dielectric spheroids have been

carried out at Rensselaer Polytechnic Institute (Greenberg et al, 1961; 1963a, b).

Measurements of scattering efficiency, Q =a T/A, A = geometric cross sectional

area (see van de Hulst, 1957; Gooarich et al, 1961) were made on a spheroid of axis

ratio 2: 1 for a number of indices of refraction, n = m -i 6, both real (6 = 0) and com-

plex (6 f 0). Differential scattering cross sections were measured but not re-

ported, and the total cross section was determined by measuring the forward

scattered field. Measurements were made for incidence nose-on and broadside, the

ltter for both vertical and horizontal polarization. The results are given in Figs.

31-33.

A series of back scattering measurements on spheroids of small eccentricity

was undertaken at the Ohio State University in support of the theoretical work of

208 ..... ...
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Mushiake (1956). Cily preliminary results were given, and these ar shown in

Fig. 34 . There was some question regarding the reliability of these results since

the experiment was not readily reproducible. The refinement of the e2rperiment was

to be tle subject of future work; however, at the present writing, refined results

are still unavailable.

209 _ -
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-- nose-on incidence

.. broadside incidence Ei parallel to axis of symmetry
1 0 - 1 U

101 ---- - broadside incidence, Hi parallel to axis of symmetry

8 -

I 1 'I "

I4I

-4 4-

2

1 2 3 4 5 6
ka(n- 1)

FIG 31: TOTAL CROSS SECTION OF A DIELECTRIC SPHEROID
n = 1 603, a/b = 2 (Greenberg et al, 1961)

210



8 [ - nose-on incidence

- -- broadside incidence, E parallel to axis of symmetry 0

----- broadside incidence, H parallel to axis of symmetry /

6 1

z
S.T -

n I-6.a.- U ,e h r e l l6 b

i I2
0

2 -

00

012 kq (n - ) 34

FIG 32; TOTAL CROSS SECTION OF A DIELECTRIC SPHEROID
n = 1 26. a/h -2 (Greenberg et al, 1960))
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FIG 33: TOTAL CROSS SECTION OF A COMPLEX DIELECTRIC SPHEROID Z
n=(tn- 16) 3 33 - 05 i (Greenberg et al, 1963b)
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APPENDIX

INDEX TO NUMERICAL TABLES

The following is a guide to the principal numerical tables which have been

computed in connection with the spheroid problem. Note that the terminology and

normalizations used in the various sources are not uniform. To reconcile the dif-

ferent systems of notatioi, see the precise definitions in each source and the Table

of Notations in FIsammer (1957). The notation a(A)b in the third column below indi-

cates that a quantity ra ges from a to b inclusive at intervals of A. Accuracy is

specified in significant .. gures.

Quantity Source Parameters, Arguments, Indices Accuracy

Eigenvalue Stratton et al m = 1X1)8; n = m(1)8 7
X (c) (1956)

mn

Flammer a) m = 0(1)3; n = m(1)3; c = 0(. 2)5.0 6-7
67) b) m=1; n=5(2)19; c=1.2, 7r/2,2.0,

3r/4, 2.5, 2.8, 3.0, 7r, 3.2 10

Weeks m= 1,; n=1(1)27 - 80(depending on c, see 9-10
(1959) below)

c=r/2 7 3r/4 2r 12 47r 5r 16

max.n = 28 39 48 44 45 80 62

U. of M.Rad. m = 0, 1; n = 0(1)3; 15
Lab. c=.0935, .1043, .156, .234, .260, .312,
unpublished .375, . 521, . 750, . 780, 937, 1.251, 1.560,

1. 876, 2. 085, 2. 493, 3. 120, 3. 75, 4. 69,
5.86, 6.24, 10.43

Spheroidal Stratton et al m=(Xi)8; n=m(1)8; c=0(.1)1.0(.2)8.0 7

Coefficients (1956)
d mn

k(c)

Flarnmer a) m 0(1)3; n=in(1)3; c=0(.2)5.0 > 5
(1957) k -21n(2) vanishing point

2 14 .......... ............_ -_
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Appendix

Index to Numerical Tables (cont.)
Quantity Source Parameters, Arguments, Indices Accurac

Spheroidal Flammer b) m = 1; n = 5(2)13; c = 1. 2, -/2, 2.0, 3r/4, > 8
Coefficients (1957) 2.5, 2.8, 3.0, r, 3.2

dmn(c) k = -2(2)vamishing point
(cont.)

U. ofM. Rad. a) m=0, 1; n=0(1) 3; c=all values specified 15

Lab. above for cigenvalues; k =all necessary
unpublished values between -16 and +16.

b) m = 0, n = 0(1)8; c! . 994, 1.391, 1. 591,1. 99 8
2.086, 2.185, 2.238, 2.782, 2.981, 2.998,
3.581, 3.681, 3. 780, 3.80, 3.88, 4. 00, 4. 28,

- 4.60

Angular Fla]mer m=0(1)3- n=m(1)3; c=.5(.5)5.0 4
Functions (1957) 0 = cos -  =0(50)900

S(C'n)
mn

Spence m=0(1)3; n=m(1)3-m) 4
(1951) a) c=1(1)5; 9 B cos-1 1=00(50)900

b)c=.5(.5)5.0; 0 = 00, 300, 600, 900

Weeks m=1; n=1(1)20, c=/2, 5, 8, 12
'1959) 0 = cos 1  5o(5 0 )90o :0 9

Radial Flamrner a) j = 1; m = 0(1)3; n = m(1)3; c =. 5(. 5)5. 0 4
Functions (1957) E=1;005, 1.020, 1.044, 1.077
R W) (c. b) = 1, 2; m=l1; n =1(213 >6
mn c = 1.2 - 3.2 (9 values listed above)

and deriv- = 1. 01, 1. 0001, 1. 000001, 1. 00000001
atives with c) j 2; m=0(1)3; n =m(1)3; c =1(1)5 4
respect to g p1. 005, 1. 020, 1. 044, 1. 077

U. ofM. Rad. j l, 2; m=0,1; n=0(1)3, E=1.005 15
Lab.

unpublished

Mathur and j=1, 2, 4; m=0,1; n=0, 1, 2
Mueller c=.1, .2, .4, .6, .8; =1.1, 1,2, 1.3 5

(1955)
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Appendix

Index to N,.merical Tables (cont.)

Quantity Source Parameters, Argument6, indices Accuracy

Radial Weeks j = 1, 2; m = 2: n x- 1(1)12-22 (see below) 3-9
Functions (1959) E = 1.077, 1. 100

R (c,) c =5 8 12
mn max. n 12 16 22

(cont.)
Normaliza- Flammer ni = 0(1)3; n = m(1)3; c = . 5(. 5)5.0 4
tion constant (1957)
N (c)
mn

Mathur and m=0; n=0,1,2; c=.1, .2, .4, .6, .8 5
Mueller

(1955)

Joining Flammer a) j = 1; m = 0(1)3; n = 0(1)3; c = 1(1)5 4
Factor (1957) b) j1; m=1; n=](2)13; c=1.2-3.2

(9 values listed above) 8

k 0 ) (c) c)j = 2 ; m=l; n = 1 (2 ) 7; c-1.2-3.2
mn (9 values listed above) 6

• ._ 2 1( -.. .. ... _ _ __......... ... .. ._ _ _
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TABLE OF NOTATION

In a work of this sort, in which a large number of symbols are employed,

some duplication is inevitable. Many of the quantities how2ver are adventitious and

are defined at the point of introduction and soon abandoned. Those in widespread or

repeatea use are listed below, along with brief definitions and references to their

points of appearance in the text.

Symbol Name of Quantity Defined
On Page

A(q) Airy function 157

a Semi-major axis of spheroid 7

b Semi-minor axis of spheroid 7

Amn, B Field expansion coefficients 27

c 1/2 xWave number x interfocal distance kF 13

d mn(c) Spheroidal coefficient 18
r

E Incident, scattered electric fields 48

E9, E }, E Components of electric field in spheroidal
coordinates 49

F 1/2 x interfocal distance 7

G ( r r') Free-space Green's function 27
0

G (r, r') Green's function of particular body with point
source 29

-. .. 217
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TABLE OF NOTATION(CONT.)

Symbol Name of Quantity Defined

G (r, r.) Fundamental solution with plane wave 30
excitation

_i, s
H Incident, scattered magnetic fields 48

H0 H~, H Components of magnetic field in spheroidalH gf coordinates 49

h., h, h Metric coefficients of spheroidal coordinates 10

h(1, Spherical Hankel function of 1st, 2nd kind 22

n

K (9, K) Kernel function in integral representation 21

k( 1 ) (c) Proportionality factor of radial and angular 22
urn ftictions

L e Me Ne
omn,- omn Hapsen's vector wave functions 47

A' m, n. Direction cosines of vector identified byj I
index 146

N Normalization constant for angular functions 20
mn

n Index of refraction 208

p m Associated Legendre function of order m,
n degree n, first kind 18

P Poynting vector 189

p Dipole strength 38

Q Associated Legendre function, 2nd kind 18
n

2 18
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TABLE OF NOTATION (CONT.)

Defined
Symbol Name of Quantity On Page

(1, 2)qn Zero of Airy function or its derivative 157

R (c, 9) Radial spheroidal function 21
mn

R Distance between two points in space 38

r Radius vector, magnitude of same 27

S (c, n) Angular spheroidal function, first kind 18
m

s Distance along ray 1013

T (cos 0) Gegenbauer function of order 1 174
n

t Time variable 27

u(P) Scalar field strength at point P 103

V Volume of spheroid 68

x, y, z Cartesian coordinates 9

z ( - ) (kr) General spherical Bessel function 22
n

a Incident Angle 120

Separation angle between transmitter 90
and receiver

A(1, 2) Wronskian determinant 22

Laplacian operator 13

.... 2 219 . . ........ .... .
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TABLE OF NOTATION (CONT.)

Defined

Symbol Nam2 of Quantity On Page

V Gradient operator c 11

6 Kronecker delta 139
mn

E Permittivity 33

1
Eccentricity of spheroid 161

E Neumann number 28

m

r1  Angular spheroidal coordinate 7

O Angle between vector R and dipole axis 38

0 Spherical or spheroidal polar angle 7

X Wavelength 13

X (c) Eigenvalue of spheroidal equation 13
mn

p Permeability of medium 33

P Parity modulus 139

v Perturbation quantity 121

Radial spheroidal coordinate 7

0 Coordinate of scattering surface 29

,r, Electric, magnetic Hertz potentials 67
G m

Pmn Normalization factor fcr radial function 22

220 .. . .. ....__-_.... ...... . . .
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TABLE OF NOTATION(CONT.)
Defined

Symbol Name of Quantity On Page

Scattering cross section 70

a Geometrical optics scattering cross section 90g.o.

Azimuthal variable 7

SnSpheroidal harmonic 76

Wave function 27

w Angular frequency 27

3
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